A264902 Number T(n,k) of defective parking functions of length n and defect k; triangle T(n,k), n>=0, 0<=k<=max(0,n-1), read by rows.
1, 1, 3, 1, 16, 10, 1, 125, 107, 23, 1, 1296, 1346, 436, 46, 1, 16807, 19917, 8402, 1442, 87, 1, 262144, 341986, 173860, 41070, 4320, 162, 1, 4782969, 6713975, 3924685, 1166083, 176843, 12357, 303, 1, 100000000, 148717762, 96920092, 34268902, 6768184, 710314, 34660, 574, 1
Offset: 0
Examples
T(2,0) = 3: [1,1], [1,2], [2,1]. T(2,1) = 1: [2,2]. T(3,1) = 10: [1,3,3], [2,2,2], [2,2,3], [2,3,2], [2,3,3], [3,1,3], [3,2,2], [3,2,3], [3,3,1], [3,3,2]. T(3,2) = 1: [3,3,3]. Triangle T(n,k) begins: 0 : 1; 1 : 1; 2 : 3, 1; 3 : 16, 10, 1; 4 : 125, 107, 23, 1; 5 : 1296, 1346, 436, 46, 1; 6 : 16807, 19917, 8402, 1442, 87, 1; 7 : 262144, 341986, 173860, 41070, 4320, 162, 1; 8 : 4782969, 6713975, 3924685, 1166083, 176843, 12357, 303, 1; ...
Links
- Alois P. Heinz, Rows n = 0..141, flattened
- Peter J. Cameron, Daniel Johannsen, Thomas Prellberg, Pascal Schweitzer, Counting Defective Parking Functions, arXiv:0803.0302 [math.CO], 2008
Crossrefs
Programs
-
Maple
S:= (n, k)-> `if`(k=0, n^n, add(binomial(n, i)*k* (k+i)^(i-1)*(n-k-i)^(n-i), i=0..n-k)): T:= (n, k)-> S(n, k)-S(n, k+1): seq(seq(T(n, k), k=0..max(0, n-1)), n=0..10);
-
Mathematica
S[n_, k_] := If[k==0, n^n, Sum[Binomial[n, i]*k*(k+i)^(i-1)*(n-k-i)^(n-i), {i, 0, n-k}]]; T[n_, k_] := S[n, k]-S[n, k+1]; T[0, 0] = 1; Table[T[n, k], {n, 0, 10}, {k, 0, Max[0, n-1]}] // Flatten (* Jean-François Alcover, Feb 18 2017, translated from Maple *)