A302583
a(n) = ((n + 1)^n - (n - 1)^n)/2.
Original entry on oeis.org
0, 1, 4, 28, 272, 3376, 51012, 908608, 18640960, 432891136, 11225320100, 321504185344, 10079828372880, 343360783937536, 12627774819845668, 498676704524517376, 21046391759976988928, 945381827279671853056, 45032132922921758270916, 2267322327322331161821184
Offset: 0
Cf.
A000169,
A065440,
A007778,
A062024,
A115416,
A274278,
A293022,
A302584,
A302585,
A302586,
A302587.
-
Table[((n + 1)^n - (n - 1)^n)/2, {n, 0, 19}]
nmax = 19; CoefficientList[Series[(x^2 - LambertW[-x]^2)/(2 x LambertW[-x] (1 + LambertW[-x])), {x, 0, nmax}], x] Range[0, nmax]!
Table[n! SeriesCoefficient[Exp[n x] Sinh[x], {x, 0, n}], {n, 0, 19}]
A274279
Expansion of e.g.f.: tanh(x*W(x)), where W(x) = LambertW(-x)/(-x).
Original entry on oeis.org
1, 2, 7, 40, 341, 3936, 57107, 992384, 20025385, 459466240, 11804134079, 335571265536, 10456512176189, 354362575314944, 12975301760361163, 510462668072058880, 21472710312090391889, 961728814178702327808, 45692671937666739799799, 2295278998002033651875840, 121545436687537993689631525, 6767130413049423041105231872, 395177438856180565803457658627, 24152146710231984411570685870080
Offset: 1
E.g.f.: A(x) = x + 2*x^2/2! + 7*x^3/3! + 40*x^4/4! + 341*x^5/5! + 3936*x^6/6! + 57107*x^7/7! + 992384*x^8/8! + 20025385*x^9/9! + 459466240*x^10/10! + 11804134079*x^11/11! + 335571265536*x^12/12! +...
such that A(x) = tanh(x*W(x))
where W(x) = LambertW(-x)/(-x) begins
W(x) = 1 + x + 3*x^2/2! + 16*x^3/3! + 125*x^4/4! + 1296*x^5/5! + 16807*x^6/6! + 262144*x^7/7! + 4782969*x^8/8! + 100000000*x^9/9! +...+ (n+1)^(n-1)*x^n/n! +...
and satisfies W(x) = exp(x*W(x)).
Also, A(x) = (W(x)^2 - 1)/(W(x)^2 + 1), where
W(x)^2 = 1 + 2*x + 8*x^2/2! + 50*x^3/3! + 432*x^4/4! + 4802*x^5/5! + 65536*x^6/6! + 1062882*x^7/7! + 20000000*x^8/8! +...+ 2*(n+2)^(n-1)*x^n/n! +...
-
Rest[CoefficientList[Series[(LambertW[-x]^2 - x^2)/(LambertW[-x]^2 + x^2), {x, 0, 20}], x] * Range[0, 20]!] (* Vaclav Kotesovec, Jun 23 2016 *)
Rest[With[{nmax=30}, CoefficientList[Series[Tanh[-LambertW[-x]], {x,0,nmax}], x]*Range[0, nmax]!]] (* G. C. Greubel, Feb 19 2018 *)
-
{a(n) = my(W=sum(m=0, n, (m+1)^(m-1)*x^m/m!) +x*O(x^n)); n!*polcoeff(tanh(x*W), n)}
for(n=1, 30, print1(a(n), ", "))
-
{a(n) = my(W = sum(m=0, n, (m+1)^(m-1)*x^m/m!) +x*O(x^n)); n!*polcoeff( (W^2 - 1)/(W^2 + 1), n)}
for(n=1, 30, print1(a(n), ", "))
-
x='x+O('x^30); Vec(serlaplace(tanh(-lambertw(-x)))) \\ G. C. Greubel, Feb 19 2018
A195136
a(n) = ((n+1)^(n-1) + (n-1)^(n-1))/2 for n>=1.
Original entry on oeis.org
1, 2, 10, 76, 776, 9966, 154400, 2803256, 58388608, 1372684090, 35958682112, 1038736032324, 32805006411776, 1124535087475814, 41584800431742976, 1650158470945337584, 69943137585151901696, 3153813559835569475058, 150745204037648268787712, 7613458147995669857352380, 405143549343202022103973888, 22657085569540734204315357022, 1328470689420203636727039918080, 81494507575933974604289943213096, 5220210773193749540624447754469376, 348542314841685116176787263033063466, 24216786265392720787141148530274467840, 1748280517106781152846793195054531026356, 130956723831431687431286364126682302906368, 10164786953127554557192799138093559445158870
Offset: 1
E.g.f.: A(x) = x + 2*x^2/2! + 10*x^3/3! + 76*x^4/4! + 776*x^5/5! + 9966*x^6/6! + 154400*x^7/7! + 2803256*x^8/8! + 58388608*x^9/9! + 1372684090*x^10/10! +...
such that A(x) = sinh(x*W(x))
where W(x) = LambertW(-x)/(-x) begins
W(x) = 1 + x + 3*x^2/2! + 16*x^3/3! + 125*x^4/4! + 1296*x^5/5! + 16807*x^6/6! + 262144*x^7/7! + 4782969*x^8/8! + 100000000*x^9/9! +...+ (n+1)^(n-1)*x^n/n! +...
and satisfies W(x) = exp(x*W(x)).
Also, A(x) = (W(x) - 1/W(x))/2 where
1/W(x) = 1 - x - x^2/2! - 4*x^3/3! - 27*x^4/4! - 256*x^5/5! - 3125*x^6/6! - 46656*x^7/7! - 823543*x^8/8! +...+ -(n-1)^(n-1)*x^n/n! +...
-
Join[{1},Table[((n+1)^(n-1)+(n-1)^(n-1))/2,{n,2,30}]] (* Harvey P. Dale, Feb 06 2023 *)
-
{a(n)=((n+1)^(n-1) + (n-1)^(n-1))/2}
for(n=1,30,print1(a(n),", "))
-
{a(n)=sum(k=0,(n-1)\2,binomial(n-1,2*k)*n^(n-2*k-1))}
for(n=1,30,print1(a(n),", "))
-
{a(n)=local(W=sum(m=0,n,(m+1)^(m-1)*x^m/m!)+x*O(x^n));n!*polcoeff(sinh(x*W),n)}
for(n=1,30,print1(a(n),", "))
Showing 1-3 of 3 results.