A277568 Numbers k such that k/6^m == 2 (mod 6), where 6^m is the greatest power of 6 that divides k.
2, 8, 12, 14, 20, 26, 32, 38, 44, 48, 50, 56, 62, 68, 72, 74, 80, 84, 86, 92, 98, 104, 110, 116, 120, 122, 128, 134, 140, 146, 152, 156, 158, 164, 170, 176, 182, 188, 192, 194, 200, 206, 212, 218, 224, 228, 230, 236, 242, 248, 254, 260, 264, 266, 272, 278
Offset: 1
Links
- Clark Kimberling, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
z = 260; a[b_] := Table[Mod[n/b^IntegerExponent[n, b], b], {n, 1, z}] p[b_, d_] := Flatten[Position[a[b], d]] p[6, 1] (* A277567 *) p[6, 2] (* A277568 *) p[6, 3] (* A277569 *) p[6, 4] (* A277570 *) p[6, 5] (* A277571 *)
-
PARI
is(n)=(n/6^valuation(n,6))%6==2 \\ Charles R Greathouse IV, Nov 03 2016
Formula
a(n) = 5n + O(log n). - Charles R Greathouse IV, Nov 03 2016
Comments