cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A277573 a(n) = (1/3)*A277569(n).

Original entry on oeis.org

1, 3, 5, 6, 7, 9, 11, 13, 15, 17, 18, 19, 21, 23, 25, 27, 29, 30, 31, 33, 35, 36, 37, 39, 41, 42, 43, 45, 47, 49, 51, 53, 54, 55, 57, 59, 61, 63, 65, 66, 67, 69, 71, 73, 75, 77, 78, 79, 81, 83, 85, 87, 89, 90, 91, 93, 95, 97, 99, 101, 102, 103, 105, 107, 108
Offset: 1

Views

Author

Clark Kimberling, Nov 01 2016

Keywords

Comments

From Amiram Eldar, Jan 16 2022: (Start)
Numbers whose 3-adic valuation is not smaller than their 2-adic valuation.
The asymptotic density of this sequence is 3/5. (End)

Crossrefs

Programs

  • Mathematica
    z = 260; a[b_] := Table[Mod[n/b^IntegerExponent[n, b], b], {n, 1, z}]
    p[b_, d_] := Flatten[Position[a[b], d]]
    p[6, 3]/3
    (* second program *)
    Select[Range[200], IntegerExponent[#, 3] >= IntegerExponent[#, 2] &] (* Amiram Eldar, Jan 16 2022 *)

A337377 Primorial deflation (denominator) of Doudna-tree.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 4, 1, 5, 3, 2, 1, 9, 2, 8, 1, 7, 5, 10, 3, 3, 1, 4, 1, 25, 9, 6, 1, 27, 4, 16, 1, 11, 7, 14, 5, 21, 5, 20, 3, 5, 3, 2, 1, 9, 2, 8, 1, 49, 25, 50, 9, 15, 3, 4, 1, 125, 27, 18, 2, 81, 8, 32, 1, 13, 11, 22, 7, 33, 7, 28, 5, 55, 21, 14, 5, 63, 10, 40, 3, 7, 5, 10, 3, 3, 1, 4, 1, 25, 9, 6, 1, 27, 4, 16, 1, 121
Offset: 0

Views

Author

Keywords

Comments

Like A005940, also this irregular table can be represented as a binary tree:
1
|
...................1...................
2 1
3......../ \........1 4......../ \........1
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
5 3 2 1 9 2 8 1
7 5 10 3 3 1 4 1 25 9 6 1 27 4 16 1
etc.
A194602 gives the positions of nodes that have value 1. They correspond to terms of A005940 that are products of primorials (A025487). The first 2^k nodes contain A000041(k+1) 1's.
a(n) is even if and only if A005940(1+n) occurs in A277569.

Crossrefs

Cf. A337376 (numerators).
A003961, A005940, A006519, A026741, A064989, A319627 are used in a formula defining this sequence.
Positions of 1's: A194602.
Cf. also A329886, A346097.

Programs

  • Mathematica
    Array[#2/GCD[#1, #2] & @@ {#, Apply[Times, Map[If[#1 <= 2, 1, NextPrime[#1, -1]]^#2 & @@ # &, FactorInteger[#]]]} &@ Function[p, Times @@ Flatten@ Table[Prime[Count[Flatten[#], 0] + 1]^#[[1, 1]] &@ Take[p, -i], {i, Length[p]}]]@ Partition[Split[Join[IntegerDigits[# - 1, 2], {2}]], 2] &[# + 1] &, 96] (* Michael De Vlieger, Aug 27 2020 *)
  • PARI
    A005940(n) = { my(p=2, t=1); n--; until(!n\=2, if((n%2), (t*=p), p=nextprime(p+1))); (t); };
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A319627(n) = (A064989(n) / gcd(n, A064989(n)));
    A337377(n) = A319627(A005940(1+n));

Formula

a(n) = A319627(A005940(1+n)).
For n >= 1, a(2*n) = A003961(a(n)) * A006519(n+1).
a(2*n+1) = A026741(a(n)).

A277568 Numbers k such that k/6^m == 2 (mod 6), where 6^m is the greatest power of 6 that divides k.

Original entry on oeis.org

2, 8, 12, 14, 20, 26, 32, 38, 44, 48, 50, 56, 62, 68, 72, 74, 80, 84, 86, 92, 98, 104, 110, 116, 120, 122, 128, 134, 140, 146, 152, 156, 158, 164, 170, 176, 182, 188, 192, 194, 200, 206, 212, 218, 224, 228, 230, 236, 242, 248, 254, 260, 264, 266, 272, 278
Offset: 1

Views

Author

Clark Kimberling, Nov 01 2016

Keywords

Comments

Positions of 2 in A277544.
Numbers having 2 as rightmost nonzero digit in base 6. This is one sequence in a 5-way splitting of the positive integers; the other four are indicated in the Mathematica program. Every term is even; see A277572.

Crossrefs

Programs

  • Mathematica
    z = 260; a[b_] := Table[Mod[n/b^IntegerExponent[n, b], b], {n, 1, z}]
    p[b_, d_] := Flatten[Position[a[b], d]]
    p[6, 1] (* A277567 *)
    p[6, 2] (* A277568 *)
    p[6, 3] (* A277569 *)
    p[6, 4] (* A277570 *)
    p[6, 5] (* A277571 *)
  • PARI
    is(n)=(n/6^valuation(n,6))%6==2 \\ Charles R Greathouse IV, Nov 03 2016

Formula

a(n) = 5n + O(log n). - Charles R Greathouse IV, Nov 03 2016

A277570 Numbers k such that k/6^m == 4 (mod 6), where 6^m is the greatest power of 6 that divides k.

Original entry on oeis.org

4, 10, 16, 22, 24, 28, 34, 40, 46, 52, 58, 60, 64, 70, 76, 82, 88, 94, 96, 100, 106, 112, 118, 124, 130, 132, 136, 142, 144, 148, 154, 160, 166, 168, 172, 178, 184, 190, 196, 202, 204, 208, 214, 220, 226, 232, 238, 240, 244, 250, 256, 262, 268, 274, 276, 280
Offset: 1

Views

Author

Clark Kimberling, Nov 01 2016

Keywords

Comments

Positions of 4 in A277544.
Numbers having 4 as rightmost nonzero digit in base 6. This is one sequence in a 5-way splitting of the positive integers; the other four are indicated in the Mathematica program. Every term is even; see A277574.

Crossrefs

Programs

  • Mathematica
    z = 260; a[b_] := Table[Mod[n/b^IntegerExponent[n, b], b], {n, 1, z}]
    p[b_, d_] := Flatten[Position[a[b], d]]
    p[6, 1] (* A277567 *)
    p[6, 2] (* A277568 *)
    p[6, 3] (* A277569 *)
    p[6, 4] (* A277570 *)
    p[6, 5] (* A277571 *)
  • PARI
    is(n)=(n/6^valuation(n,6))%6==4 \\ Charles R Greathouse IV, Nov 03 2016

Formula

a(n) = 5n + O(log n). - Charles R Greathouse IV, Nov 03 2016

A277567 Numbers k such that k/6^m == 1 (mod 6), where 6^m is the greatest power of 6 that divides k.

Original entry on oeis.org

1, 6, 7, 13, 19, 25, 31, 36, 37, 42, 43, 49, 55, 61, 67, 73, 78, 79, 85, 91, 97, 103, 109, 114, 115, 121, 127, 133, 139, 145, 150, 151, 157, 163, 169, 175, 181, 186, 187, 193, 199, 205, 211, 216, 217, 222, 223, 229, 235, 241, 247, 252, 253, 258, 259, 265
Offset: 1

Views

Author

Clark Kimberling, Nov 01 2016

Keywords

Comments

Positions of 1 in A277544. Numbers having 1 as rightmost nonzero digit in base 6. This is one sequence in a 5-way splitting of the positive integers; the other four are indicated in the Mathematica program.

Crossrefs

Programs

  • Mathematica
    z = 260; a[b_] := Table[Mod[n/b^IntegerExponent[n, b], b], {n, 1, z}]
    p[b_, d_] := Flatten[Position[a[b], d]]
    p[6, 1] (* A277567 *)
    p[6, 2] (* A277568 *)
    p[6, 3] (* A277569 *)
    p[6, 4] (* A277570 *)
    p[6, 5] (* A277571 *)
    Select[Range[300],Mod[#/6^IntegerExponent[#,6],6]==1&] (* Harvey P. Dale, Sep 27 2023 *)
  • PARI
    is(n)=(n/6^valuation(n,6))%6==1 \\ Charles R Greathouse IV, Nov 03 2016

Formula

a(n) = 5n + O(log n). - Charles R Greathouse IV, Nov 03 2016

A277571 Numbers k such that k/6^m == 5 (mod 6), where 6^m is the greatest power of 6 that divides k.

Original entry on oeis.org

5, 11, 17, 23, 29, 30, 35, 41, 47, 53, 59, 65, 66, 71, 77, 83, 89, 95, 101, 102, 107, 113, 119, 125, 131, 137, 138, 143, 149, 155, 161, 167, 173, 174, 179, 180, 185, 191, 197, 203, 209, 210, 215, 221, 227, 233, 239, 245, 246, 251, 257, 263, 269, 275, 281
Offset: 1

Views

Author

Clark Kimberling, Nov 01 2016

Keywords

Comments

Positions of 5 in A277544.
Numbers having 5 as rightmost nonzero digit in base 6. This is one sequence in a 5-way splitting of the positive integers; the other four are indicated in the Mathematica program.

Crossrefs

Programs

  • Mathematica
    z = 260; a[b_] := Table[Mod[n/b^IntegerExponent[n, b], b], {n, 1, z}]
    p[b_, d_] := Flatten[Position[a[b], d]]
    p[6, 1] (* A277567 *)
    p[6, 2] (* A277568 *)
    p[6, 3] (* A277569 *)
    p[6, 4] (* A277570 *)
    p[6, 5] (* A277571 *)
    Select[Range[300],Mod[#/6^IntegerExponent[#,6],6]==5&] (* Harvey P. Dale, Feb 14 2025 *)
  • PARI
    is(n) = Mod(n/6^valuation(n, 6), 6)==5 \\ Felix Fröhlich, Nov 02 2016

Formula

a(n) = 5n + O(log n). - Charles R Greathouse IV, Nov 03 2016
Showing 1-6 of 6 results.