cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277614 a(n) is the coefficient of x^n/n! in exp(x + n*x^2/2).

Original entry on oeis.org

1, 1, 3, 10, 73, 426, 4951, 41308, 658785, 7149628, 144963451, 1937124696, 47660873833, 756536698360, 21888570052623, 402400189738576, 13384439813823361, 279666289640774928, 10512823691028429235, 246061359639756047008, 10314843348672697017801, 267328220273408530004896, 12363686002049118477390343, 351473836594567725961268160, 17776996370247936310502612833, 550002942283550733215994429376
Offset: 0

Views

Author

Paul D. Hanna, Nov 10 2016

Keywords

Comments

From Peter Luschny, Jan 17 2023: (Start)
a(n) is the number of connection patterns in a telephone system with n possibilities of connection and n subscribers.
The number of matchings of a complete multigraph K(n, n).
The main diagonal of A359762. (End)
Let k be a positive integer. It appears that reducing this sequence modulo k produces an eventually periodic sequence. For example, modulo 10 the sequence becomes [1, 3, 0, 3, 6, 1, 8, 5, 8, 1, 6, 3, 0, 3, 6, 1, 8, 5, 8, 1, 6, 3, 0, 3, 6, ...], with an apparent period [1, 8, 5, 8, 1, 6, 3, 0, 3, 6] of length 10 starting at a(5). - Peter Bala, Apr 16 2023

Examples

			E.g.f.: A(x) = 1 + x + 3*x^2/2! + 10*x^3/3! + 73*x^4/4! + 426*x^5/5! + 4951*x^6/6! + 41308*x^7/7! + 658785*x^8/8! + 7149628*x^9/9! + 144963451*x^10/10! + ...
The table of coefficients of x^k/k! in exp(x + n*x^2/2) begins:
n=0: 1, 1,  1,  1,   1,    1,     1,      1,       1, ...;
n=1: 1, 1,  2,  4,  10,   26,    76,    232,     764, ...;
n=2: 1, 1,  3,  7,  25,   81,   331,   1303,    5937, ...;
n=3: 1, 1,  4, 10,  46,  166,   856,   3844,   21820, ...;
n=4: 1, 1,  5, 13,  73,  281,  1741,   8485,   57233, ...;
n=5: 1, 1,  6, 16, 106,  426,  3076,  15856,  123516, ...;
n=6: 1, 1,  7, 19, 145,  601,  4951,  26587,  234529, ...;
n=7: 1, 1,  8, 22, 190,  806,  7456,  41308,  406652, ...;
n=8: 1, 1,  9, 25, 241, 1041, 10681,  60649,  658785, ...;
n=9: 1, 1, 10, 28, 298, 1306, 14716,  85240, 1012348, ...;
n=10:1, 1, 11, 31, 361, 1601, 19651, 115711, 1491281, ...; ...
in which the main diagonal forms this sequence.
In the above table, the e.g.f. of the m-th diagonal equals the e.g.f. of this sequence multiplied by ( LambertW(-x^2)/(-x^2) )^(m/2).
Example,
A(x)*sqrt(-LambertW(-x^2))/x = 1 + x + 4*x^2/2! + 13*x^3/3! + 106*x^4/4! + 601*x^5/5! + 7456*x^6/6! + 60649*x^7/7! + 1012348*x^8/8! + ...
equals the e.g.f. of the next lower diagonal in the table.
RELATED SERIES.
-LambertW(-x^2) = x^2 + 2*x^4/2! + 3^2*x^6/3! + 4^3*x^8/4! + 5^4*x^10/5! + 6^5*x^12/6! + ... + n^(n-1)*x^(2*n)/n! + ...
sqrt(-LambertW(-x^2)) = x + 3^0*x^3/(1!*2) + 5*x^5/(2!*2^2) + 7^2*x^7/(3!*2^3) + 9^3*x^9/(4!*2^4) + ... + (2*n+1)^(n-1)*x^(2*n+1)/(n!*2^n) + ...
		

Crossrefs

Programs

  • Maple
    a := n -> add(binomial(n, j) * doublefactorial(j-1) * n^(j/2), j = 0..n, 2):
    seq(a(n), n = 0..25); # Peter Luschny, Jan 17 2023
  • PARI
    {a(n) = n!*polcoeff( exp(x + n*x^2/2 + x*O(x^n)),n)}
    for(n=0,30,print1(a(n),", "))
    
  • Python
    from math import factorial, comb
    def oddfactorial(n: int) -> int:
        return factorial(2 * n) // (2**n * factorial(n))
    def a(n: int) -> int:
        return sum(comb(n, 2*j) * oddfactorial(j) * n**j for j in range(n+1))
    print([a(n) for n in range(26)]) # Peter Luschny, Jan 17 2023

Formula

E.g.f.: exp( sqrt(-LambertW(-x^2)) ) / (1 + LambertW(-x^2)).
a(n) ~ (exp(1) + (-1)^n*exp(-1)) * n^n / (sqrt(2) * exp(n/2)). - Vaclav Kotesovec, Nov 11 2016
a(n) = Sum_{j=0..n, j even} binomial(n, j) * (j - 1)!! * n^(j/2). - Peter Luschny, Jan 17 2023