A277614 a(n) is the coefficient of x^n/n! in exp(x + n*x^2/2).
1, 1, 3, 10, 73, 426, 4951, 41308, 658785, 7149628, 144963451, 1937124696, 47660873833, 756536698360, 21888570052623, 402400189738576, 13384439813823361, 279666289640774928, 10512823691028429235, 246061359639756047008, 10314843348672697017801, 267328220273408530004896, 12363686002049118477390343, 351473836594567725961268160, 17776996370247936310502612833, 550002942283550733215994429376
Offset: 0
Keywords
Examples
E.g.f.: A(x) = 1 + x + 3*x^2/2! + 10*x^3/3! + 73*x^4/4! + 426*x^5/5! + 4951*x^6/6! + 41308*x^7/7! + 658785*x^8/8! + 7149628*x^9/9! + 144963451*x^10/10! + ... The table of coefficients of x^k/k! in exp(x + n*x^2/2) begins: n=0: 1, 1, 1, 1, 1, 1, 1, 1, 1, ...; n=1: 1, 1, 2, 4, 10, 26, 76, 232, 764, ...; n=2: 1, 1, 3, 7, 25, 81, 331, 1303, 5937, ...; n=3: 1, 1, 4, 10, 46, 166, 856, 3844, 21820, ...; n=4: 1, 1, 5, 13, 73, 281, 1741, 8485, 57233, ...; n=5: 1, 1, 6, 16, 106, 426, 3076, 15856, 123516, ...; n=6: 1, 1, 7, 19, 145, 601, 4951, 26587, 234529, ...; n=7: 1, 1, 8, 22, 190, 806, 7456, 41308, 406652, ...; n=8: 1, 1, 9, 25, 241, 1041, 10681, 60649, 658785, ...; n=9: 1, 1, 10, 28, 298, 1306, 14716, 85240, 1012348, ...; n=10:1, 1, 11, 31, 361, 1601, 19651, 115711, 1491281, ...; ... in which the main diagonal forms this sequence. In the above table, the e.g.f. of the m-th diagonal equals the e.g.f. of this sequence multiplied by ( LambertW(-x^2)/(-x^2) )^(m/2). Example, A(x)*sqrt(-LambertW(-x^2))/x = 1 + x + 4*x^2/2! + 13*x^3/3! + 106*x^4/4! + 601*x^5/5! + 7456*x^6/6! + 60649*x^7/7! + 1012348*x^8/8! + ... equals the e.g.f. of the next lower diagonal in the table. RELATED SERIES. -LambertW(-x^2) = x^2 + 2*x^4/2! + 3^2*x^6/3! + 4^3*x^8/4! + 5^4*x^10/5! + 6^5*x^12/6! + ... + n^(n-1)*x^(2*n)/n! + ... sqrt(-LambertW(-x^2)) = x + 3^0*x^3/(1!*2) + 5*x^5/(2!*2^2) + 7^2*x^7/(3!*2^3) + 9^3*x^9/(4!*2^4) + ... + (2*n+1)^(n-1)*x^(2*n+1)/(n!*2^n) + ...
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..416
- Urszula Bednarz and Małgorzata Wołowiec-Musiał, On a new generalization of telephone numbers, Turkish Journal of Mathematics: Vol. 43: No. 3, (2019).
Programs
-
Maple
a := n -> add(binomial(n, j) * doublefactorial(j-1) * n^(j/2), j = 0..n, 2): seq(a(n), n = 0..25); # Peter Luschny, Jan 17 2023
-
PARI
{a(n) = n!*polcoeff( exp(x + n*x^2/2 + x*O(x^n)),n)} for(n=0,30,print1(a(n),", "))
-
Python
from math import factorial, comb def oddfactorial(n: int) -> int: return factorial(2 * n) // (2**n * factorial(n)) def a(n: int) -> int: return sum(comb(n, 2*j) * oddfactorial(j) * n**j for j in range(n+1)) print([a(n) for n in range(26)]) # Peter Luschny, Jan 17 2023
Formula
E.g.f.: exp( sqrt(-LambertW(-x^2)) ) / (1 + LambertW(-x^2)).
a(n) ~ (exp(1) + (-1)^n*exp(-1)) * n^n / (sqrt(2) * exp(n/2)). - Vaclav Kotesovec, Nov 11 2016
a(n) = Sum_{j=0..n, j even} binomial(n, j) * (j - 1)!! * n^(j/2). - Peter Luschny, Jan 17 2023
Comments