cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A359762 Array read by ascending antidiagonals. T(n, k) = n!*[x^n] exp(x + (k/2) * x^2). A generalization of the number of involutions (or of 'telephone numbers').

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 1, 10, 7, 4, 1, 1, 1, 26, 25, 10, 5, 1, 1, 1, 76, 81, 46, 13, 6, 1, 1, 1, 232, 331, 166, 73, 16, 7, 1, 1, 1, 764, 1303, 856, 281, 106, 19, 8, 1, 1, 1, 2620, 5937, 3844, 1741, 426, 145, 22, 9, 1, 1
Offset: 0

Views

Author

Peter Luschny, Jan 14 2023

Keywords

Comments

The array is a generalization of the number of involutions of permutations on n letters, A000085, also known as 'telephone numbers'. According to Bednarz et al. the telephone number interpretation "is due to John Riordan, who noticed that T(n, 1) is the number of connection patterns in a telephone system with n subscribers."
In graph theory, the n-th telephone number is the total number of matchings of a complete graph K_n (see the Wikipedia entry). Assuming a network with k possibilities of connections leads to a network that can be modeled by a complete multigraph K(n, k). The total number of connection patterns in such a network is given by T(n, k).

Examples

			Array T(n, k) starts:
  [n\k] 0   1      2        3       4        5        6        7
  --------------------------------------------------------------
  [0] 1,    1,     1,       1,      1,       1,       1,       1, ... [A000012]
  [1] 1,    1,     1,       1,      1,       1,       1,       1, ... [A000012]
  [2] 1,    2,     3,       4,      5,       6,       7,       8, ... [A000027]
  [3] 1,    4,     7,      10,     13,      16,      19,      22, ... [A016777]
  [4] 1,   10,    25,      46,     73,     106,     145,     190, ... [A100536]
  [5] 1,   26,    81,     166,    281,     426,     601,     806, ...
  [6] 1,   76,   331,     856,   1741,    3076,    4951,    7456, ...
  [7] 1,  232,  1303,    3844,   8485,   15856,   26587,   41308, ...
  [8] 1,  764,  5937,   21820,  57233,  123516,  234529,  406652, ...
  [9] 1, 2620, 26785,  114076, 328753,  757756, 1510705, 2719900, ...
   [A000085][A047974][A115327][A115329][A115331]
		

References

  • John Riordan, Introduction to Combinatorial Analysis, Dover (2002).

Crossrefs

Programs

  • Maple
    T := (n, k) -> add(binomial(n, j)*doublefactorial(j-1)*k^(j/2), j = 0..n, 2):
    for n from 0 to 9 do lprint(seq(T(n, k), k = 0..7)) od;
    T := (n, k) -> ifelse(k=0, 1, I^(-n)*(2*k)^(n/2)*KummerU(-n/2, 1/2, -1/(2*k))):
    seq(seq(simplify(T(n-k, k)), k = 0..n), n = 0..10);
    T := proc(n, k) exp(x + (k/2)*x^2): series(%, x, 16): n!*coeff(%, x, n) end:
    seq(lprint(seq(simplify(T(n, k)), k = 0..8)), n = 0..9);
    T := proc(n, k) option remember; if n = 0 or n = 1 then 1 else T(n, k-1) +
    n*(k-1)*T(n, k-2) fi end: for n from 0 to 9 do seq(T(n, k), k=0..9) od;
    # Only to check the interpretation as a determinant of a lower Hessenberg matrix:
    gen := proc(i, j, n) local ev, tv; ev := irem(j+i, 2) = 0; tv := j < i and not ev;
    if j > i + 1 then 0 elif j = i + 1 then -1 elif j <= i and ev then 1
    elif tv and i < n then x*(n + 1 - i) - 1 else x fi end:
    det := M -> LinearAlgebra:-Determinant(M):
    p := (n, k) -> subs(x = k, det(Matrix(n, (i, j) -> gen(i, j, n)))):
    for n from 0 to 9 do seq(p(n, k), k = 0..7) od;
  • Mathematica
    T[n_, k_] := Sum[Binomial[n, j] Factorial2[j-1] * If[j==0, 1,  k^(j/2)], {j, 0, n, 2}];
    Table[T[n-k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 25 2023 *)
  • Python
    from math import factorial, comb
    def oddfactorial(n: int) -> int:
        return factorial(2 * n) // (2**n * factorial(n))
    def T(n: int, k: int) -> int:
        return sum(comb(n, 2 * j) * oddfactorial(j) * k**j for j in range(n + 1))
    for n in range(10): print([T(n, k) for k in range(8)])

Formula

T(n, k) = Sum_{j=0..n, j even} binomial(n, j) * (j - 1)!! * k^(j/2).
T(n, k) = T(n, k-1) + n*(k-1)*T(n, k-2) for n >= 2, T(n, 0) = T(n, 1) = 1.
T(n, k) = i^(-n) * (2*k)^(n/2) * KummerU(-n/2, 1/2, -1/(2*k)) for k >= 1, and T(n, 0) = 1.

A362300 a(n) = n! * Sum_{k=0..floor(n/3)} (n/3)^k * binomial(n-2*k,k)/(n-2*k)!.

Original entry on oeis.org

1, 1, 1, 7, 33, 101, 1681, 14211, 72577, 1906633, 23242401, 166218911, 5966236321, 95016917997, 873707885233, 39767572858651, 781865428682241, 8787169718273681, 484500265577706817, 11335266937098816183, 150554918241183405601, 9749671976020428623221
Offset: 0

Views

Author

Seiichi Manyama, Apr 15 2023

Keywords

Comments

Let k be a positive integer. It appears that reducing this sequence modulo k produces an eventually periodic sequence with period a multiple of k. For example, modulo 9 the sequence becomes [1, 1, 1, 7, 6, 2, 7, 0, 1, 1, 0, 8, 7, 0, 7, 7, 0, 8, 1, 0, 1, 7, 0, 2, 7, 0, 1, 1, 0, 8, 7, 0, 7, 7, 0, 8, 1, 0, 1, 7, 0, 2, 7, 0, 1, ...], with an apparent period [2, 7, 0, 1, 1, 0, 8, 7, 0, 7, 7, 0, 8, 1, 0, 1, 7, 0] of length 18 starting at a(5). - Peter Bala, Apr 16 2023

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((-lambertw(-x^3))^(1/3))/(1+lambertw(-x^3))))

Formula

a(n) = A362043(n,2*n).
a(n) = n! * [x^n] exp(x + n*x^3/3).
E.g.f.: exp( ( -LambertW(-x^3) )^(1/3) ) / (1 + LambertW(-x^3)).
a(n) ~ (1 + 2*cos(2*Pi*mod(n,3)/3 - sqrt(3)/2)/exp(3/2)) * n^n / (sqrt(3) * exp(2*n/3 - 1)). - Vaclav Kotesovec, Apr 18 2023

A362276 a(n) = n! * Sum_{k=0..floor(n/2)} (-n/2)^k * binomial(n-k,k)/(n-k)!.

Original entry on oeis.org

1, 1, -1, -8, 25, 326, -1709, -31016, 228257, 5311900, -50337449, -1429574464, 16573668409, 555724876552, -7619288730325, -294582728145824, 4662562423032961, 204200579987319824, -3664348770051277073, -179294278761195862400, 3597007651803106610201
Offset: 0

Views

Author

Seiichi Manyama, Apr 13 2023

Keywords

Crossrefs

Main diagonal of A362277.
Cf. A277614.

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(sqrt(lambertw(x^2)))/(1+lambertw(x^2))))

Formula

a(n) = n! * [x^n] exp(x - n*x^2/2).
E.g.f.: exp( sqrt( LambertW(x^2) ) ) / (1 + LambertW(x^2)).

A362319 a(n) = n! * Sum_{k=0..floor(n/5)} (n/5)^k / (k! * (n-5*k)!).

Original entry on oeis.org

1, 1, 1, 1, 1, 121, 865, 3529, 10753, 27217, 7318081, 96720625, 689990401, 3508289929, 14239793569, 5933573525881, 114415115802625, 1165402803391009, 8298505279241857, 46355961619888993, 26167218073714552321, 663290722580370585625
Offset: 0

Views

Author

Seiichi Manyama, Apr 16 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((-lambertw(-x^5))^(1/5))/(1+lambertw(-x^5))))

Formula

a(n) = n! * [x^n] exp(x + n*x^5/5).
E.g.f.: exp( ( -LambertW(-x^5) )^(1/5) ) / (1 + LambertW(-x^5)).

A362347 a(n) = n! * Sum_{k=0..floor(n/2)} k^k / (k! * (n-2*k)!).

Original entry on oeis.org

1, 1, 3, 7, 61, 261, 3991, 24403, 524217, 4149001, 114544171, 1111976031, 37492210933, 431097055117, 17165526306111, 228085258466731, 10472666396599921, 157882659583461393, 8211536252680154707, 138474928851961700791, 8045878340298511456941
Offset: 0

Views

Author

Seiichi Manyama, Apr 17 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x)/(1+lambertw(-x^2))))

Formula

E.g.f.: exp(x) / (1 + LambertW(-x^2)).
a(n) ~ (exp(2*exp(-1/2)) + (-1)^n) * n^n / (sqrt(2) * exp(n/2 + exp(-1/2))). - Vaclav Kotesovec, Aug 05 2025

A362173 a(n) = n! * Sum_{k=0..floor(n/3)} (n/6)^k * binomial(n-2*k,k)/(n-2*k)!.

Original entry on oeis.org

1, 1, 1, 4, 17, 51, 481, 3676, 18369, 272917, 3011201, 21058236, 427112401, 6160655359, 55380250017, 1423658493076, 25361574327041, 278603741558601, 8673295084155649, 183914415577719892, 2387417408385462801, 87273239189497636171, 2146479566819857007201
Offset: 0

Views

Author

Seiichi Manyama, Apr 14 2023

Keywords

Crossrefs

Main diagonal of A362043.

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((-2*lambertw(-x^3/2))^(1/3))/(1+lambertw(-x^3/2))))

Formula

a(n) = n! * [x^n] exp(x + n*x^3/6).
E.g.f.: exp( ( -2*LambertW(-x^3/2) )^(1/3) ) / (1 + LambertW(-x^3/2)).

A362314 a(n) = n! * Sum_{k=0..floor(n/4)} (n/4)^k /(k! * (n-4*k)!).

Original entry on oeis.org

1, 1, 1, 1, 25, 151, 541, 1471, 84001, 925345, 5682601, 25177681, 2245355641, 35901100951, 312222474565, 1917363070351, 232479594721921, 4873115730725761, 54830346428307601, 430468886732009185, 65997947903313461401, 1711564302775814535511
Offset: 0

Views

Author

Seiichi Manyama, Apr 15 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp((-lambertw(-x^4))^(1/4))/(1+lambertw(-x^4))))

Formula

a(n) = n! * [x^n] exp(x + n*x^4/4).
E.g.f.: exp( ( -LambertW(-x^4) )^(1/4) ) / (1 + LambertW(-x^4)).
From Vaclav Kotesovec, Apr 18 2023: (Start)
a(n) ~ c * n^n / exp(3*n/4), where
c = cosh(1) + cos(1) if mod(n,4)=0,
c = sinh(1) + sin(1) if mod(n,4)=1,
c = cosh(1) - cos(1) if mod(n,4)=2,
c = sinh(1) - sin(1) if mod(n,4)=3. (End)

A362350 a(n) = n! * Sum_{k=0..floor(n/2)} (k/2)^k / (k! * (n-2*k)!).

Original entry on oeis.org

1, 1, 2, 4, 19, 71, 601, 3277, 39089, 277489, 4250341, 37110701, 693581197, 7184750509, 158461520309, 1899055549861, 48269252293201, 656869268651537, 18903165795857089, 287927838327392929, 9252988524143245181, 155954097639111859501
Offset: 0

Views

Author

Seiichi Manyama, Apr 17 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x)/(1+lambertw(-x^2/2))))

Formula

E.g.f.: exp(x) / (1 + LambertW(-x^2/2)).
a(n) ~ (exp(2^(3/2)*exp(-1/2)) + (-1)^n) * n^n / (2^((n+1)/2) * exp(n/2 + sqrt(2)*exp(-1/2))). - Vaclav Kotesovec, Apr 18 2023

A362281 a(n) = n! * Sum_{k=0..floor(n/2)} n^k * binomial(n-k,k)/(n-k)!.

Original entry on oeis.org

1, 1, 5, 19, 241, 1601, 32581, 308995, 8655809, 106673761, 3805452901, 57704760851, 2500580809585, 45018720191329, 2295683481085541, 47848514992963651, 2806491306922172161, 66464103165835330625, 4407449313521981148229, 116893033842508769526931
Offset: 0

Views

Author

Seiichi Manyama, Apr 14 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(sqrt(-lambertw(-2*x^2)/2))/(1+lambertw(-2*x^2))))

Formula

a(n) = n! * [x^n] exp(x + n*x^2).
E.g.f.: exp( sqrt( -LambertW(-2*x^2)/2 ) ) / (1 + LambertW(-2*x^2)).
a(n) ~ (1 + (-1)^n/exp(sqrt(2))) * 2^((n-1)/2) * n^n / exp(n/2 - 1/sqrt(2)). - Vaclav Kotesovec, Apr 15 2023

A362283 Expansion of e.g.f. exp( sqrt(-LambertW(-x^2)) ).

Original entry on oeis.org

1, 1, 1, 4, 13, 106, 601, 7456, 60649, 1012348, 10748161, 225641296, 2957978101, 74847384184, 1168123938073, 34598428916416, 626497273410961, 21261683280971536, 438222313050326209, 16765636110497697088, 387549609831150094621, 16502188154766906299296
Offset: 0

Views

Author

Seiichi Manyama, Apr 14 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(sqrt(-lambertw(-x^2)))))

Formula

a(0) = 1; a(n) = Sum_{k=0..floor((n-1)/2)} A034940(k) * binomial(n-1,2*k) * a(n-2*k-1).
Showing 1-10 of 10 results.