cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A362351 a(n) = n! * Sum_{k=0..floor(n/3)} (k/6)^k / (k! * (n-3*k)!).

Original entry on oeis.org

1, 1, 1, 2, 5, 11, 61, 316, 1177, 11005, 84121, 434446, 5642781, 56725527, 374014005, 6211205456, 77331975281, 620174850521, 12539310726577, 186125334960730, 1757911008913141, 41887694462674691, 721886016954223661, 7846403629258814852, 215270385425700640905
Offset: 0

Views

Author

Seiichi Manyama, Apr 17 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x)/(1+lambertw(-x^3/6))))

Formula

E.g.f.: exp(x) / (1 + LambertW(-x^3/6)).
a(n) ~ n^n * (exp(6^(1/3)*exp(-1/3)) + 2*cos(2^(-2/3)*3^(5/6)*exp(-1/3) - 2*Pi*n/3) / exp(2^(-2/3)*3^(1/3)*exp(-1/3))) / (2^(n/3) * 3^(n/3 + 1/2) * exp(2*n/3)). - Vaclav Kotesovec, Apr 18 2023

A362352 a(n) = n! * Sum_{k=0..floor(n/4)} (k/24)^k / (k! * (n-4*k)!).

Original entry on oeis.org

1, 1, 1, 1, 2, 6, 16, 36, 211, 1387, 6511, 23431, 225721, 2207921, 14610597, 71848141, 958259121, 12403693681, 105819536881, 659686502257, 11235532306021, 180826378073461, 1888306425160541, 14256573124903341, 295428115205647117, 5683724892725141901
Offset: 0

Views

Author

Seiichi Manyama, Apr 17 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x)/(1+lambertw(-x^4/24))))

Formula

E.g.f.: exp(x) / (1 + LambertW(-x^4/24)).
a(n) ~ (exp(2^(3/4)*3^(1/4)*exp(-1/4)) + (-1)^n/exp(2^(3/4)*3^(1/4)*exp(-1/4)) + 2*cos(2^(3/4)*3^(1/4)*exp(-1/4) - Pi*n/2)) * n^n / (2^(3*n/4 + 1) * 3^(n/4) * exp(3*n/4)). - Vaclav Kotesovec, Apr 18 2023

A362524 a(n) = n! * Sum_{k=0..floor(n/2)} (k+1)^(k-1) / (2^k * k! * (n-2*k)!).

Original entry on oeis.org

1, 1, 2, 4, 16, 56, 391, 2017, 20504, 139456, 1867681, 15751451, 262263442, 2638794094, 52589415971, 614628436801, 14274125637256, 190012483804952, 5041005195499849, 75288391385094811, 2246914521052963166, 37204717212894726706, 1233884675800841217847
Offset: 0

Views

Author

Seiichi Manyama, Apr 23 2023

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n!Sum[(k+1)^(k-1)/(2^k k!(n-2k)!),{k,0,Floor[n/2]}],{n,0,25}] (* Harvey P. Dale, Mar 30 2024 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x-lambertw(-x^2/2))))

Formula

E.g.f.: exp(x - LambertW(-x^2/2)) = -2 * LambertW(-x^2/2)/x^2 * exp(x).
a(n) ~ (exp(sqrt(2)*exp(-1/2) + 1) + (-1)^n*exp(1 - sqrt(2)*exp(-1/2))) * n^(n-1) / (2^((n-1)/2) * exp(n/2)). - Vaclav Kotesovec, Aug 05 2025

A362704 Expansion of e.g.f. 1/(1 + LambertW(-x^2/2 * exp(x))).

Original entry on oeis.org

1, 0, 1, 3, 18, 130, 1140, 11886, 142408, 1934640, 29357100, 492249340, 9038206056, 180352513848, 3886286296984, 89937276717120, 2224716791224320, 58577968147130176, 1635780290409117648, 48286974141713673072, 1502385897082471446880
Offset: 0

Views

Author

Seiichi Manyama, Apr 30 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(1/(1+lambertw(-x^2/2*exp(x)))))

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} k^(n-k) / (2^k * k! * (n-2*k)!).
Showing 1-4 of 4 results.