A362350
a(n) = n! * Sum_{k=0..floor(n/2)} (k/2)^k / (k! * (n-2*k)!).
Original entry on oeis.org
1, 1, 2, 4, 19, 71, 601, 3277, 39089, 277489, 4250341, 37110701, 693581197, 7184750509, 158461520309, 1899055549861, 48269252293201, 656869268651537, 18903165795857089, 287927838327392929, 9252988524143245181, 155954097639111859501
Offset: 0
A362352
a(n) = n! * Sum_{k=0..floor(n/4)} (k/24)^k / (k! * (n-4*k)!).
Original entry on oeis.org
1, 1, 1, 1, 2, 6, 16, 36, 211, 1387, 6511, 23431, 225721, 2207921, 14610597, 71848141, 958259121, 12403693681, 105819536881, 659686502257, 11235532306021, 180826378073461, 1888306425160541, 14256573124903341, 295428115205647117, 5683724892725141901
Offset: 0
A362705
Expansion of e.g.f. 1/(1 + LambertW(-x^3/6 * exp(x))).
Original entry on oeis.org
1, 0, 0, 1, 4, 10, 60, 595, 4536, 34524, 361320, 4333725, 51214460, 651628406, 9448719644, 146868322055, 2376666773040, 41077757951000, 762599081332176, 14918668387075449, 305774990501285940, 6602482711971622210, 149921553418087172260, 3557552268845721893131
Offset: 0
A362525
a(n) = n! * Sum_{k=0..floor(n/3)} (k+1)^(k-1) / (6^k * k! * (n-3*k)!).
Original entry on oeis.org
1, 1, 1, 2, 5, 11, 51, 246, 897, 7085, 51221, 260426, 2938541, 28279967, 184234415, 2714662406, 32614422401, 259026339161, 4721237878537, 67998862785970, 637019875964341, 13852253151455251, 232584488748665131, 2510358957337412182, 63466995535914172225
Offset: 0
Showing 1-4 of 4 results.