cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A277697 a(n) = index of the least unitary prime divisor of n or 0 if no such prime-divisor exists.

Original entry on oeis.org

0, 1, 2, 0, 3, 1, 4, 0, 0, 1, 5, 2, 6, 1, 2, 0, 7, 1, 8, 3, 2, 1, 9, 2, 0, 1, 0, 4, 10, 1, 11, 0, 2, 1, 3, 0, 12, 1, 2, 3, 13, 1, 14, 5, 3, 1, 15, 2, 0, 1, 2, 6, 16, 1, 3, 4, 2, 1, 17, 2, 18, 1, 4, 0, 3, 1, 19, 7, 2, 1, 20, 0, 21, 1, 2, 8, 4, 1, 22, 3, 0, 1, 23, 2, 3, 1, 2, 5, 24, 1, 4, 9, 2, 1, 3, 2, 25, 1, 5, 0, 26, 1, 27, 6, 2
Offset: 1

Views

Author

Antti Karttunen, Oct 28 2016

Keywords

Examples

			For n = 8 = 2*2*2, none of the prime divisors are unitary, thus a(8) = 0.
For n = 20 = 2*2*5 = prime(1)^2 * prime(3), the prime divisor 2 is not unitary, but 5 (= prime(3)) is, thus a(20) = 3.
For n = 36 = 2*2*3*3, none of the prime divisors are unitary, thus a(36) = 0.
		

Crossrefs

Cf. A001694 (positions of zeros).
Cf. also A080368, A277698, A277707.

Programs

  • Mathematica
    Table[If[Length@ # == 0, 0, PrimePi@ First@ #] &@ Select[FactorInteger[n][[All, 1]], GCD[#, n/#] == 1 &], {n, 105}] (* Michael De Vlieger, Oct 30 2016 *)
  • PARI
    a(n) = {my(f = factor(n)); for(i = 1, #f~, if(f[i, 2] == 1, return(primepi(f[i, 1])))); 0;} \\ Amiram Eldar, Jul 28 2024
  • Python
    from sympy import factorint, primepi, isprime, primefactors
    def a049084(n): return primepi(n)*(1*isprime(n))
    def a055396(n): return 0 if n==1 else a049084(min(primefactors(n)))
    def a028234(n):
        f = factorint(n)
        return 1 if n==1 else n/(min(f)**f[min(f)])
    def a067029(n):
        f=factorint(n)
        return 0 if n==1 else f[min(f)]
    def a(n): return 0 if n==1 else a055396(n) if a067029(n)==1 else a(a028234(n)) # Indranil Ghosh, May 15 2017
    
  • Scheme
    (definec (A277697 n) (cond ((= 1 n) 0) ((= 1 (A067029 n)) (A055396 n)) (else (A277697 (A028234 n)))))
    

Formula

a(1) = 0; for n > 1, if A067029(n) = 1, then a(n) = A055396(n), otherwise a(n) = a(A028234(n)).

A080368 a(n) is the least unitary prime divisor of n, or 0 if no such prime divisor exists.

Original entry on oeis.org

0, 2, 3, 0, 5, 2, 7, 0, 0, 2, 11, 3, 13, 2, 3, 0, 17, 2, 19, 5, 3, 2, 23, 3, 0, 2, 0, 7, 29, 2, 31, 0, 3, 2, 5, 0, 37, 2, 3, 5, 41, 2, 43, 11, 5, 2, 47, 3, 0, 2, 3, 13, 53, 2, 5, 7, 3, 2, 59, 3, 61, 2, 7, 0, 5, 2, 67, 17, 3, 2, 71, 0, 73, 2, 3, 19, 7, 2, 79, 5, 0, 2, 83, 3, 5, 2, 3, 11, 89, 2, 7, 23, 3, 2
Offset: 1

Views

Author

Labos Elemer, Feb 21 2003

Keywords

Examples

			For n = 252100 = 2*2*3*5*5*7*11*11, the unitary prime divisors are {3,7}, the smallest is 3, so a(252100) = 3.
		

Crossrefs

Cf. A001694 (positions of zeros).
Cf. A277698 for a variant which gives 1's instead of 0's for numbers with no unitary prime divisors (A001694).

Programs

  • Haskell
    a080368 n = if null us then 0 else fst $ head us
      where us = filter ((== 1) . snd) $ zip (a027748_row n) (a124010_row n)
    -- Reinhard Zumkeller, Jul 23 2014
    
  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]]; lf[x_] := Length[FactorInteger[x]]; ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}]; gb[x_] := GCD[ba[x], x/ba[x]]; fpg[x_] := Flatten[Position[gb[x], 1]]; upd[x_] := Part[ba[x], fpg[x]]; mxu[x_] := Max[upd[x]]; miu[x_] := Min[upd[x]]; Do[If[Equal[upd[n], {}], Print[0]]; If[ !Equal[upd[n], {}], Print[miu[n]]], {n, 2, 256}]
    Table[If[Or[n == 1, Length@ # == 0], 0, First@ #] &@ Select[FactorInteger[n][[All, 1]], GCD[#, n/#] == 1 &], {n, 94}] (* Michael De Vlieger, Oct 30 2016 *)
    a[n_] := If[(p = Select[FactorInteger[n], Last[#] == 1 &][[;; , 1]]) == {}, 0, Min[p]]; a[1] = 0; Array[a, 100] (* Amiram Eldar, Aug 17 2024 *)
  • PARI
    a(n) = {my(f = factor(n), pmin = 0); for(i = 1, #f~, if(f[i, 2] == 1, if(pmin == 0, pmin = f[i, 1], if(f[i, 1] < pmin, pmin = f[i, 1])))); pmin;} \\ Amiram Eldar, Aug 17 2024
  • Python
    from sympy import factorint, prime, primepi, isprime, primefactors
    def a049084(n): return primepi(n)*(1*isprime(n))
    def a055396(n): return 0 if n==1 else a049084(min(primefactors(n)))
    def a028234(n):
        f = factorint(n)
        return 1 if n==1 else n/(min(f)**f[min(f)])
    def a067029(n):
        f=factorint(n)
        return 0 if n==1 else f[min(f)]
    def a277697(n): return 0 if n==1 else a055396(n) if a067029(n)==1 else a277697(a028234(n))
    def a(n): return 0 if a277697(n)==0 else prime(a277697(n)) # Indranil Ghosh, May 16 2017
    
  • Scheme
    (define (A080368 n) (if (zero? (A277697 n)) 0 (A000040 (A277697 n)))) ;; Antti Karttunen, Oct 28 2016
    

Formula

If A277697(n) = 0, then a(n) = 0, otherwise a(n) = A000040(A277697(n)). - Antti Karttunen, Oct 28 2016
from Amiram Eldar, Aug 17 2024: (Start)
a(n) = 0 if and only of n is powerful (A001694).
a(n) = A020639(A055231(n)) if n is not powerful. (End)

Extensions

a(1)=0 inserted by Reinhard Zumkeller, Jul 23 2014

A277708 a(n) = Least prime divisor of n with an odd exponent, or 1 if n is a perfect square.

Original entry on oeis.org

1, 2, 3, 1, 5, 2, 7, 2, 1, 2, 11, 3, 13, 2, 3, 1, 17, 2, 19, 5, 3, 2, 23, 2, 1, 2, 3, 7, 29, 2, 31, 2, 3, 2, 5, 1, 37, 2, 3, 2, 41, 2, 43, 11, 5, 2, 47, 3, 1, 2, 3, 13, 53, 2, 5, 2, 3, 2, 59, 3, 61, 2, 7, 1, 5, 2, 67, 17, 3, 2, 71, 2, 73, 2, 3, 19, 7, 2, 79, 5, 1, 2, 83, 3, 5, 2, 3, 2, 89, 2, 7, 23, 3, 2, 5, 2, 97, 2, 11, 1, 101, 2, 103, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Oct 28 2016

Keywords

Crossrefs

Cf. A000290 (after its initial zero-term gives the positions of ones in this sequence).
Cf. also A277698.

Programs

  • PARI
    a(n) = my(f = factor(core(n))); if (!#f~, 1, vecmin(f[,1])); \\ Michel Marcus, Oct 30 2016
    
  • Python
    from sympy import primefactors
    from sympy.ntheory.factor_ import core
    def lpf(n): return 1 if n==1 else primefactors(n)[0]
    def a(n): return lpf(core(n)) # Indranil Ghosh, May 17 2017

Formula

a(n) = A008578(1+A277707(n)).
a(n) = A020639(A007913(n)).

A371601 Nonsquarefree numbers whose largest nonunitary prime divisor is smaller than their smallest unitary prime divisor, if it exists.

Original entry on oeis.org

4, 8, 9, 12, 16, 20, 24, 25, 27, 28, 32, 36, 40, 44, 45, 48, 49, 52, 56, 60, 63, 64, 68, 72, 76, 80, 81, 84, 88, 92, 96, 99, 100, 104, 108, 112, 116, 117, 120, 121, 124, 125, 128, 132, 135, 136, 140, 144, 148, 152, 153, 156, 160, 164, 168, 169, 171, 172, 175, 176
Offset: 1

Views

Author

Amiram Eldar, Mar 29 2024

Keywords

Comments

Subsequence of A283050 and first differs from it at n = 100: A283050(100) = 300 = 2^2 * 3 * 5^2 is not a term of this sequence.
Powerful numbers and nonpowerful numbers k such that 1 < A249740(k) < A277698(k), or equivalently, 1 < A006530(A057521(k)) < A020639(A055231(k)).
The asymptotic density of this sequence is (6/Pi^2) * Sum_{p prime} f(p)/(p^2-p+1) = 0.32131800923..., where f(p) = Product_{primes q <= p} (q^2-q+1)/(q^2-1).

Crossrefs

Programs

  • Mathematica
    q[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, Max[e] > 1 && (Min[e] > 1 || Max[e[[FirstPosition[e, 1][[1]] ;; -1]]] == 1)]; Select[Range[200], q]
  • PARI
    is(n) = {my(e = apply(x->if(x > 1, 2, 1), factor(n)[,2])); n > 1 && vecmax(e) > 1 && vecsort(e, , 4) == e;}
Showing 1-4 of 4 results.