A277780 a(n) is the least k > n such that n*k^2 is a cube.
8, 16, 24, 32, 40, 48, 56, 27, 72, 80, 88, 96, 104, 112, 120, 54, 136, 144, 152, 160, 168, 176, 184, 81, 200, 208, 64, 224, 232, 240, 248, 108, 264, 272, 280, 288, 296, 304, 312, 135, 328, 336, 344, 352, 360, 368, 376, 162, 392, 400, 408, 416, 424, 128, 440
Offset: 1
Examples
a(24) = 81 because 24 * 81^2 = 54^3; a(25) = 200 because 25 * 200^2 = 100^3; a(26) = 208 because 26 * 208^2 = 104^3; a(27) = 64 because 27 * 64^2 = 48^3. The cubefree part of 144 is 18. The cubefull part of 144 is 8 = 2^3. Therefore, a(144) = 18 * 3^3 = 486. - _David A. Corneth_, Nov 01 2016
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Table[k = n + 1; While[! IntegerQ[(n k^2)^(1/3)], k++]; k, {n, 55}] (* Michael De Vlieger, Nov 04 2016 *)
-
PARI
a(n) = {my(k = n+1); while (!ispower(n*k^2, 3), k++); k;} \\ Michel Marcus, Oct 31 2016
-
PARI
a(n) = {my(f = factor(n)); f[, 2] = f[, 2]%3; f=factorback(f); n = sqrtnint(n/f,3); (n+1)^3 * f} \\ David A. Corneth, Nov 01 2016
Formula
a(n) = A050985(n) * A000578(1+A048766(A008834(n))). [Formula given in comments expressed with A-numbers] - Antti Karttunen, Nov 02 2016.
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = 1 + (3*zeta(4) + 3*zeta(5) + zeta(6))/zeta(3) = 7.13539675963975495073... . - Amiram Eldar, Feb 17 2024
Comments