cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A129771 Evil odd numbers.

Original entry on oeis.org

3, 5, 9, 15, 17, 23, 27, 29, 33, 39, 43, 45, 51, 53, 57, 63, 65, 71, 75, 77, 83, 85, 89, 95, 99, 101, 105, 111, 113, 119, 123, 125, 129, 135, 139, 141, 147, 149, 153, 159, 163, 165, 169, 175, 177, 183, 187, 189, 195, 197, 201, 207, 209, 215, 219, 221, 225, 231, 235
Offset: 1

Views

Author

Tanya Khovanova, May 16 2007

Keywords

Comments

A heuristic argument suggests that, as n tends to infinity, a(n)/n converges to 4. - Stefan Steinerberger, May 17 2007
These numbers may be called primitive evil numbers because every evil number is a power of 2 multiplied by one of these numbers. Note that the difference between consecutive terms is either 2, 4, or 6. - T. D. Noe, Jun 06 2007
If m is in the sequence, then so is 2m-1 because in binary, m is x1 and 2m-1 is x01. Presumably the numbers that generate the whole sequence by application of n -> 2n-1 are the evil numbers times 4 plus 3. - Ralf Stephan, May 25 2013

Crossrefs

Intersection of A001969 and A005408.
Supersequence of A093688.
Cf. A092246 (odd odious numbers).
Column 2 of A277880, positions of 1's in A277808 (2's in A277822).

Programs

  • Mathematica
    Select[Range[300], OddQ[ # ] && EvenQ[DigitCount[ #, 2, 1]] &] (* Stefan Steinerberger, May 17 2007 *)
    Select[Range[300], EvenQ[Plus @@ IntegerDigits[ #, 2]] && OddQ[ # ] &]
  • PARI
    is(n)=n%2 && hammingweight(n)%2==0 \\ Charles R Greathouse IV, Mar 21 2013
    
  • PARI
    a(n)=4*n-if(hammingweight(n-1)%2,3,1) \\ Charles R Greathouse IV, Mar 21 2013
    
  • Python
    def A129771(n): return (((m:=n-1)<<1)+(m.bit_count()&1^1)<<1)+1 # Chai Wah Wu, Mar 09 2023

Formula

a(n) = 2*A000069(n) + 1. a(n) is 1 plus twice odious numbers.
a(n) = A128309(n) + 1. a(n) is 1 plus odious even numbers.
A132680(a(n)) = A132680((a(n)-1)/2) + 2. - Reinhard Zumkeller, Aug 26 2007
a(n) = 4n + O(1). - Charles R Greathouse IV, Mar 21 2013
a(n) = A001969(1+A000069(n)) = A277902(A277823(n)). - Antti Karttunen, Nov 05 2016

Extensions

More terms from Stefan Steinerberger, May 17 2007

A277822 a(n) = index of the column where n is located in array A277880.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 3, 1, 1, 2, 3, 1, 4, 1, 1, 2, 1, 2, 3, 1, 4, 1, 1, 2, 5, 1, 1, 2, 1, 2, 3, 1, 1, 2, 3, 1, 4, 1, 1, 2, 5, 1, 1, 2, 1, 2, 3, 1, 6, 1, 1, 2, 1, 2, 3, 1, 1, 2, 3, 1, 4, 1, 1, 2, 1, 2, 3, 1, 4, 1, 1, 2, 5, 1, 1, 2, 1, 2, 3, 1, 6, 1, 1, 2, 1, 2, 3, 1, 1, 2, 3, 1, 4, 1, 1, 2, 7, 1, 1, 2, 1, 2, 3, 1, 1, 2, 3, 1, 4, 1, 1, 2, 1, 2, 3, 1, 4, 1, 1, 2, 5
Offset: 0

Views

Author

Antti Karttunen, Nov 03 2016

Keywords

Comments

Ordinal transform of A277813.
a(n) = 1 + the number of iterations of map k -> A003188(A006068(k)/2) that are required (when starting from k = n) until k is an odious number.

Crossrefs

Formula

a(0) = 0, for n >= 1, a(n) = 1 + (A010059(n)*A001511(n)).
a(0) = 0, for n >= 1, if A010060(n) = 1 [when n is one of the odious numbers, A000069], then a(n) = 1, otherwise a(n) = 1 + a(A003188(A006068(n)/2)).
Other identities. For all n >= 1:
a(n) = 1 + a(floor(n/2)) when A010060(n) = 0.
a(n) = 1+A277808(n).

A277812 a(n) = the first odious number encountered when starting from k = n and iterating the map k -> A003188(A006068(k)/2).

Original entry on oeis.org

1, 2, 1, 4, 2, 1, 7, 8, 4, 2, 11, 1, 13, 14, 7, 16, 8, 4, 19, 2, 21, 22, 11, 1, 25, 26, 13, 28, 14, 7, 31, 32, 16, 8, 35, 4, 37, 38, 19, 2, 41, 42, 21, 44, 22, 11, 47, 1, 49, 50, 25, 52, 26, 13, 55, 56, 28, 14, 59, 7, 61, 62, 31, 64, 32, 16, 67, 8, 69, 70, 35, 4, 73, 74, 37, 76, 38, 19, 79, 2, 81, 82, 41, 84, 42, 21, 87, 88, 44, 22, 91, 11, 93, 94, 47, 1, 97, 98, 49, 100
Offset: 1

Views

Author

Antti Karttunen, Nov 03 2016

Keywords

Crossrefs

Cf. A277808 (gives the number of such iterations needed to reach a(n) from n).
Cf. A003945 (the positions of 1's in this sequence).

Formula

If A010060(n) = 1 [when n is one of the odious numbers, A000069], then a(n) = n, otherwise a(n) = a(A003188(A006068(n)/2)).
Other identities:
a(n) = A000069(A277813(n)).
If A010060(n) = 0 [when n is one of the evil numbers, A001969], then a(n)= a(A000265(n)) [the trailing zeros in binary expansion of n do not affect the result].
For all n >= 1, a(A000069(n)) = A000069(n). [By definition].
For all n > 1, a(A001969(n)) < A001969(n).

A324379 a(n) = A007814(A005187(n)).

Original entry on oeis.org

0, 0, 2, 0, 3, 1, 0, 0, 4, 1, 0, 1, 0, 0, 1, 0, 5, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 3, 0, 0, 6, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 3, 0, 1, 0, 0, 1, 0, 1, 3, 0, 0, 1, 4, 0, 2, 0, 0, 3, 0, 7, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 3, 0, 1, 0, 0, 1, 0, 1, 3, 0, 0, 1, 4, 0, 2, 0, 0, 3, 1, 0, 0, 1, 0, 1, 3, 0, 0, 1
Offset: 1

Views

Author

Antti Karttunen, Feb 28 2019

Keywords

Crossrefs

Programs

  • PARI
    A324379(n) = { my(s=n); while(n>>=1, s+=n); valuation(s,2); };

Formula

a(n) = A007814(A005187(n)).
Showing 1-4 of 4 results.