cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A277844 Number of finite automata with n states, n input symbols and six output symbols.

Original entry on oeis.org

1, 81, 11328242, 29902254119865429, 817701868164546859278494745163, 285033249600409431428643990739291312182972084132, 1892438067444572851650149500498661434054764424790064535313952779756847, 339676614862729029614552301296020122485910436927008569295805654935518977116532247635480871741432
Offset: 1

Views

Author

Marko Riedel, Nov 01 2016

Keywords

Crossrefs

A277840 Number of finite automata with n states, n input symbols and two output symbols.

Original entry on oeis.org

1, 44, 142336, 244698934716, 347256965617453111707, 683647218221456315461840833799588, 2846969183281612697167894035560332610102537605107, 35612941825082950044316879351953518880328546726186269125209259942000, 1805164781998352977708541832242375664226097624365740577986086562708182817353463604362494621
Offset: 1

Views

Author

Marko Riedel, Nov 01 2016

Keywords

Crossrefs

A277841 Number of finite automata with n states, n input symbols and three output symbols.

Original entry on oeis.org

1, 74, 1804128, 53512221536494, 2922627429145967591227933, 497730359833453928180319002991414602093, 403397426941463986598664115278880491308873007636372427413, 2209668743041973325985756217800328983151637526070225333484395817216844313778044
Offset: 1

Views

Author

Marko Riedel, Nov 01 2016

Keywords

Crossrefs

A277842 Number of finite automata with n states, n input symbols and one four output symbols.

Original entry on oeis.org

1, 81, 6064606, 1334647986999812, 970906913413864886205472630, 3914970565374711299589044295533654728633307, 133558404360787903168869516536280931557107488047811301767090944, 54745234941096457415294245370001308972451724232455240696557887565208148810995582605398
Offset: 1

Views

Author

Marko Riedel, Nov 01 2016

Keywords

Crossrefs

A277843 Number of finite automata with n states, n input symbols and five output symbols.

Original entry on oeis.org

1, 81, 9875766, 9508729532667775, 51400728418762283743166947873, 2412787002750586428934439397030434799264061139, 1497241493787657622590696899117249253525915361372369634716838093562, 17442838191172723332310678848004599133452884005515399679140805741625547114446168989072880538
Offset: 1

Views

Author

Marko Riedel, Nov 01 2016

Keywords

Crossrefs

A277836 Number of '6' digits in the set of all numbers from 0 to A014824(n) = Sum_{i=1..n} i*10^(n-i) = (0, 1, 12, 123, 1234, 12345, ...).

Original entry on oeis.org

0, 0, 1, 22, 343, 4664, 58986, 713315, 8367717, 96022849, 1083685281, 12071420713, 133059886145, 1454055651577, 15775124417009, 170096923182441, 1824426021947881, 19478828120713394, 207133960219479637, 2194796392318253180, 23182531824417099723
Offset: 0

Views

Author

M. F. Hasler, Nov 01 2016

Keywords

Examples

			For n=2 there is only one digit '6' in the sequence 0, 1, 2, ..., 12.
For n=3 there are 11 + 10 = 21 more digits '6' in { 16, 26, ..., 56, 60, ..., 69, 76, 86, ..., 116 }, where 66 accounts for two '6's.
		

Crossrefs

Programs

  • Mathematica
    T[int_Integer, {bndsLow_Integer, bndsUpp_Integer}] := Table[
       Count[
        Flatten[Table[
          IntegerDigits[m],
          {m, 1, Sum[
             10^i - 1,
             {i, n}
             ]/9
           }
          ]],
        int
        ],
       {n, bndsLow, bndsUpp}
       ];
    T[6, {0, 7}](* Robert P. P. McKone, Jan 01 2021 *)
  • PARI
    print1(c=N=0);for(n=1,8,print1(","c+=sum(k=N+1,N=N*10+n,#select(d->d==6,digits(k)))))
    
  • PARI
    A277836(n,m=6)=if(n>m,A277836(n,m+1)+(m+2)*10^(n-m-1),A277830(n)-(m>n)) \\ M. F. Hasler, Nov 02 2016

Formula

a(n) = A277839(n) = A083449(n) = A277830(n) - 1 for n < 6,
a(n) = A277835(n) - 7*10^(n-6) for n >= 6,
a(n) = A277837(n) + 8*10^(n-7) for n >= 7.

Extensions

More terms from Lars Blomberg, Nov 05 2016
Removed incorrect b-file. - David A. Corneth, Dec 31 2020

A362897 Array read by antidiagonals: T(n,k) is the number of nonisomorphic multisets of endofunctions on an n-set with k endofunctions.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 7, 1, 1, 1, 13, 74, 19, 1, 1, 1, 22, 638, 1474, 47, 1, 1, 1, 34, 4663, 118949, 41876, 130, 1, 1, 1, 50, 28529, 7643021, 42483668, 1540696, 343, 1, 1, 1, 70, 151600, 396979499, 33179970333, 23524514635, 68343112, 951, 1
Offset: 0

Views

Author

Andrew Howroyd, May 10 2023

Keywords

Comments

Isomorphism is up to permutations of the elements of the n-set.

Examples

			Array begins:
======================================================================
n/k| 0   1       2           3               4                   5 ...
---+------------------------------------------------------------------
0  | 1   1       1           1               1                   1 ...
1  | 1   1       1           1               1                   1 ...
2  | 1   3       7          13              22                  34 ...
3  | 1   7      74         638            4663               28529 ...
4  | 1  19    1474      118949         7643021           396979499 ...
5  | 1  47   41876    42483668     33179970333      20762461502595 ...
6  | 1 130 1540696 23524514635 274252613077267 2559276179593762172 ...
  ...
		

Crossrefs

Columns k=0..3 are A000012, A001372, A054745, A362898.
Row n=2 is A002623.
Main diagonal is A277839.
Cf. A362644.

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(v,m) = {prod(i=1, #v, my(g=gcd(v[i],m), e=v[i]/g); sum(j=1, #v, my(t=v[j]); if(e%(t/gcd(t,m))==0, t))^g)}
    T(n,k) = {if(n==0, 1, my(s=0); forpart(q=n, s+=permcount(q) * polcoef(exp(sum(m=1, k, K(q,m)*x^m/m, O(x*x^k))), k)); s/n!)}

Formula

T(0,k) = T(1,k) = 1.

A362902 Number of nonisomorphic multisets of fixed-point-free endofunctions on an n-set with n endofunctions.

Original entry on oeis.org

1, 0, 1, 22, 81015, 78954264778, 28097782272713021650, 5303746708038163087962610366540, 750301169575330570948709311656320180808090293, 107340347538849305728376873042317973326061404804760169389400111, 20170881768834535901905153264317820972982675109510814553304001503205327205300015737
Offset: 0

Views

Author

Andrew Howroyd, May 10 2023

Keywords

Comments

Isomorphism is up to permutation of the elements of the n-set.

Crossrefs

Main diagonal of A362899.
Cf. A277839.
Showing 1-8 of 8 results.