cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A277993 Sophie Germain primes p such that p + 2 and p - 2 are semiprimes.

Original entry on oeis.org

23, 53, 89, 113, 131, 251, 293, 491, 683, 719, 953, 1439, 1499, 1511, 1733, 2393, 3491, 3779, 5171, 7043, 7151, 7433, 7649, 7901, 8069, 8663, 9689, 10781, 12011, 12653, 13049, 13229, 13451, 13553, 14669, 15569, 16001, 16253, 18899, 19709, 20411, 22469, 22751, 23099
Offset: 1

Views

Author

K. D. Bajpai, Nov 07 2016

Keywords

Comments

Intersection of A005384 and A063643.

Examples

			a(1) = 23 is Sophie Germain prime because 2*23 + 1 = 47 is prime. Also, 23 + 2 = 25 =  5*5; 23 - 2 = 21 = 7*3; are both semiprime.
a(2) = 53 is Sophie Germain prime because 2*53 + 1 = 107 is prime. Also, 53 + 2 = 55 =  11*5; 23 - 2 = 51 = 17*3; are both semiprime.
		

Crossrefs

Programs

  • Mathematica
    Select[Select[Prime[Range[10000]], PrimeQ[2 # + 1] &], PrimeOmega[# - 2] == 2 && PrimeOmega[# + 2] == 2 &]
    Select[Prime[Range[3000]],PrimeQ[2#+1]&&PrimeOmega[#+{2,-2}]=={2,2}&] (* Harvey P. Dale, Dec 16 2017 *)
  • PARI
    is(n) = ispseudoprime(n) && ispseudoprime(2*n+1) && bigomega(n+2)==2 && bigomega(n-2)==2 \\ Felix Fröhlich, Nov 07 2016