A278328 Numbers n such that abs(n - rev(n)) is a square, where rev(n) is the decimal reverse of n (A004086).
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 21, 22, 23, 26, 32, 33, 34, 37, 40, 43, 44, 45, 48, 51, 54, 55, 56, 59, 62, 65, 66, 67, 73, 76, 77, 78, 84, 87, 88, 89, 90, 95, 98, 99, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 202, 212, 222, 232, 242, 252, 262
Offset: 1
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000
Programs
-
Maple
a:= proc(n) option remember; local k; for k from 1+ `if`(n=1, -1, a(n-1)) while not issqr(abs(k-(s-> parse(cat(s[-i]$i=1..length(s))))(""||k))) do od: k end: seq(a(n), n=1..100); # Alois P. Heinz, Nov 18 2016
-
Mathematica
Select[Range@ 262, IntegerQ@ Sqrt@ Abs[# - FromDigits@ Reverse@ IntegerDigits@ #] &] (* Michael De Vlieger, Nov 18 2016 *)
-
PARI
is(n) = issquare(abs(n - eval(concat(Vecrev(Str(n)))))) \\ Felix Fröhlich, Nov 18 2016
-
PARI
is(n, {b=10}) = issquare(abs(n - subst(Polrev(digits(n, b),'x),'x,b))); \\ Gheorghe Coserea, Nov 27 2016
-
Python
import math n = 0 while True: if math.sqrt(abs(n-int(str(n)[::-1])))%1 == 0: print(n) n += 1 # Jonathan Frech, Nov 18 2016
Comments