A278928 Decimal expansion of sqrt(sqrt(2) + 1).
1, 5, 5, 3, 7, 7, 3, 9, 7, 4, 0, 3, 0, 0, 3, 7, 3, 0, 7, 3, 4, 4, 1, 5, 8, 9, 5, 3, 0, 6, 3, 1, 4, 6, 9, 4, 8, 1, 6, 4, 5, 8, 3, 4, 9, 9, 4, 1, 0, 3, 0, 7, 8, 3, 6, 3, 3, 2, 6, 7, 1, 1, 4, 8, 3, 3, 3, 6, 7, 5, 2, 5, 6, 7, 8, 8, 7, 3, 3, 1, 0, 2, 7, 2, 7, 9
Offset: 1
Examples
1.553773974030037307344158953063146948164583499410307836332671...
References
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 7.4, p. 466.
Links
Crossrefs
Programs
-
Magma
Sqrt(1+Sqrt(2)); // G. C. Greubel, Apr 14 2018
-
Maple
Digits:=100: evalf(sqrt(sqrt(2)+1)); # Wesley Ivan Hurt, Dec 01 2016
-
Mathematica
RealDigits[Sqrt[Sqrt[2] + 1], 10, 100][[1]] (* Wesley Ivan Hurt, Dec 01 2016 *)
-
PARI
sqrt(sqrt(2)+1) \\ Charles R Greathouse IV, Dec 01 2016
-
PARI
polrootsreal(x^4 - 2*x^2 - 1)[2] \\ Charles R Greathouse IV, Dec 01 2016
Formula
Equals 1/A154747.
Limit_{n -> oo} A002965(n)^(1/n).
From Peter Bala, Jul 01 2024: (Start)
This constant occurs in the evaluation of Integral_{x = 0..Pi/2} 1/(1 + sin^4(x)) dx = Pi/4 * sqrt(sqrt(2) + 1).
Equals 2*Sum_{n >= 0} (-1/16)^n * binomial(4*n, 2*n) (a slowly converging series). (End)
Equals 2^(3/4)*cos(Pi/8). - Vaclav Kotesovec, Jul 01 2024
Equals Product_{k>=0} coth(Pi/4 + k*Pi/2). - Antonio GraciĆ” Llorente, Dec 19 2024
Comments