cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A322799 Number of compositions (ordered partitions) of n into heptagonal numbers (A000566).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 10, 13, 17, 22, 29, 37, 46, 57, 71, 89, 112, 143, 183, 233, 295, 372, 468, 588, 741, 937, 1188, 1506, 1908, 2414, 3049, 3848, 4857, 6136, 7757, 9812, 12414, 15702, 19852, 25089, 31703, 40061, 50631, 64004, 80923, 102318
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 26 2018

Keywords

Crossrefs

Programs

  • Maple
    h:= proc(n) option remember; `if`(n<1, 0, (t->
          `if`(t*(5*t-3)/2>n, t-1, t))(1+h(n-1)))
        end:
    a:= proc(n) option remember; `if`(n=0, 1,
          add(a(n-i*(5*i-3)/2), i=1..h(n)))
        end:
    seq(a(n), n=0..60);  # Alois P. Heinz, Dec 28 2018
  • Mathematica
    nmax = 53; CoefficientList[Series[1/(1 - Sum[x^(k (5 k - 3)/2), {k, 1, nmax}]), {x, 0, nmax}], x]

Formula

G.f.: 1/(1 - Sum_{k>=1} x^(k*(5*k-3)/2)).

A279280 Expansion of Product_{k>=1} (1 + x^(k*(5*k-3)/2)).

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 1, 1, 2, 1, 0, 0, 1, 1
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 09 2016

Keywords

Comments

Number of partitions of n into distinct heptagonal numbers (A000566).

Examples

			a(81) = 2 because we have [81] and [55, 18, 7, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax = 120; CoefficientList[Series[Product[1 + x^(k (5 k - 3)/2), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + x^(k*(5*k-3)/2)).

A279041 Expansion of Product_{k>=1} 1/(1 - x^(k*(3*k-2))).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 10, 10, 11, 11, 11, 12, 12, 12, 14, 14, 15, 15, 15, 16, 16, 16, 18, 18, 19, 19, 19, 21, 21, 22, 24, 25, 26, 26, 26, 28, 28, 29, 31, 32, 33, 33, 33, 35, 35, 36, 39, 40, 42, 42, 43, 45, 46, 47, 50, 51, 53
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 04 2016

Keywords

Comments

Number of partitions of n into nonzero octagonal numbers (A000567).

Examples

			a(9) = 2 because we have [8, 1] and [1, 1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Maple
    h:= proc(n) option remember; `if`(n<1, 0, (t->
          `if`(t*(3*t-2)>n, t-1, t))(1+h(n-1)))
        end:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          b(n, i-1)+(t-> b(n-t, min(i, h(n-t))))(i*(3*i-2))))
        end:
    a:= n-> b(n, h(n)):
    seq(a(n), n=0..100);  # Alois P. Heinz, Dec 28 2018
  • Mathematica
    nmax=90; CoefficientList[Series[Product[1/(1 - x^(k (3 k - 2))), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^(k*(3*k-2))).

A294621 Number of partitions of n into generalized heptagonal numbers (A085787).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 3, 4, 4, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 16, 18, 20, 21, 23, 26, 29, 32, 35, 38, 41, 45, 49, 53, 59, 64, 69, 73, 80, 87, 94, 101, 109, 117, 125, 134, 145, 156, 167, 178, 190, 202, 217, 232, 249, 265, 282, 299, 318, 339, 361, 384, 408, 432, 457, 484, 514, 545, 578, 610, 646
Offset: 0

Views

Author

Ilya Gutkovskiy, Nov 05 2017

Keywords

Examples

			a(8) = 4 because we have [7, 1], [4, 4], [4, 1, 1, 1, 1] and [1, 1, 1, 1, 1, 1, 1, 1].
		

Crossrefs

Programs

  • Mathematica
    nmax = 70; CoefficientList[Series[Product[1/((1 - x^(k (5 k - 3)/2)) (1 - x^(k (5 k + 3)/2))), {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} 1/((1 - x^(k*(5*k-3)/2))*(1 - x^(k*(5*k+3)/2))).

A332015 Number of compositions (ordered partitions) of n into distinct heptagonal numbers.

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 2, 6, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 2, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 6, 0, 1, 2, 0, 0, 6, 24, 0, 2, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 6, 0, 0, 0, 0, 0, 6, 25, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Feb 04 2020

Keywords

Examples

			a(26) = 6 because we have [18, 7, 1], [18, 1, 7], [7, 18, 1], [7, 1, 18], [1, 18, 7] and [1, 7, 18].
		

Crossrefs

Showing 1-5 of 5 results.