A099612
Numerators of the coefficients in the Taylor expansion of sec(x) + tan(x) around x=0.
Original entry on oeis.org
1, 1, 1, 1, 5, 2, 61, 17, 277, 62, 50521, 1382, 540553, 21844, 199360981, 929569, 3878302429, 6404582, 2404879675441, 443861162, 14814847529501, 18888466084, 69348874393137901, 113927491862, 238685140977801337, 58870668456604, 4087072509293123892361
Offset: 0
1 + x + 1/2*x^2 + 1/3*x^3 + 5/24*x^4 + 2/15*x^5 + 61/720*x^6 + 17/315*x^7 + ...
1, 1, 1/2, 1/3, 5/24, 2/15, 61/720, 17/315, 277/8064, 62/2835, 50521/3628800, 1382/155925, 540553/95800320, ... = A099612/A099617
- Seiichi Manyama, Table of n, a(n) for n = 0..487
- L. Euler, On the sums of series of reciprocals, par. 13, arXiv:math/0506415 [math.HO], 2005-2008.
- L. Euler, De summis serierum reciprocarum, E41, par. 13, Euler Archive.
- Peter Luschny, The Euler-Bernoulli diamond and the lost Bernoulli numbers.
-
R := n -> (cos(n*Pi/2)+sin(n*Pi/2))*(4^(n+1)-2^(n+1))*((Zeta(0,-n,3/4)-Zeta(0,-n,1/4))/(2^(-n)-2)-Zeta(-n))/GAMMA(n+1):
[1, seq(numer(R(n)), n=1..19)]; # Peter Luschny, Aug 25 2015
# From Peter Luschny, Aug 03 2017: (Start) By recurrence:
S := proc(n, k) option remember; if k = 0 then `if`(n = 0, 1, 0) else
S(n, k - 1) + S(n - 1, n - k) fi end: A099612 := n -> numer(S(n, n)/n!):
seq(A099612(n), n=0..26);
# or evaluating polynomials at -i:
P := proc(n, x) local k, j; add(add((-1)^j*2^(-k)*binomial(k,j)*(k-2*j)^n*
x^(n-k), j=0..k), k=0..n) end: R := n -> `if`(n = 0, 1, P(n-1, -I)/ n!):
seq(numer(R(n)), n=0..26);
# or with the Euler polynomials:
ep := n -> `if`(n=0,1,2^n*(euler(n,1/2)-euler(n,1))*(-1)^iquo(n+1,2)):
a := n -> numer(ep(n)/n!): seq(a(n), n=0..26); # (End)
-
nn = 26; Numerator[CoefficientList[Series[Sec[x] + Tan[x], {x, 0, nn}], x]] (* T. D. Noe, Jul 24 2013 *)
Table[If[n==0,1,2 I^(n+1) PolyLog[-n, -I] / n!], {n,0,26}] // Numerator (* Peter Luschny, Aug 03 2017 *)
Table[(1 + Mod[n,2])LerchPhi[(-1)^(n+1), n+1, 1/2]/Pi^(n+1), {n, 0, 26}] // Numerator (* Peter Luschny, Aug 03 2017 *)
A099617
Denominators of the coefficients in the Taylor expansion of sec(x) + tan(x) around x=0.
Original entry on oeis.org
1, 1, 2, 3, 24, 15, 720, 315, 8064, 2835, 3628800, 155925, 95800320, 6081075, 87178291200, 638512875, 4184557977600, 10854718875, 6402373705728000, 1856156927625, 97316080327065600, 194896477400625, 1124000727777607680000, 2900518163668125, 9545360026665222144000
Offset: 0
1 + x + (1/2)*x^2 + (1/3)*x^3 + (5/24)*x^4 + (2/15)*x^5 + (61/720)*x^6 + (17/315)*x^7 + ...
1, 1, 1/2, 1/3, 5/24, 2/15, 61/720, 17/315, 277/8064, 62/2835, 50521/3628800, 1382/155925, 540553/95800320, ... = A099612/A099617
- Seiichi Manyama, Table of n, a(n) for n = 0..451
- L. Euler, On the sums of series of reciprocals, par. 13, arXiv:math/0506415 [math.HO], 2005-2008.
- L. Euler, De summis serierum reciprocarum, E41, par. 13.
- Peter Luschny, The Euler-Bernoulli diamond and the lost Bernoulli numbers.
-
# From Peter Luschny, Aug 03 2017: (Start)
S := proc(n, k) option remember; if k = 0 then `if`(n = 0, 1, 0) else
S(n, k - 1) + S(n - 1, n - k) fi end: A099617 := n -> denom(S(n, n)/n!):
seq(A099617(n), n=0..24); # version 1
P := proc(n,x) local k,j; add(add((-1)^j*2^(-k)*binomial(k,j)
*(k-2*j)^n* x^(n-k), j=0..k), k=0..n) end: R := n -> `if`(n = 0, 1, P(n-1, -I)/ n!): seq(denom(R(n)), n=0..24); # version 2
ep := n -> `if`(n=0,1,2^n*abs(euler(n,1/2) - euler(n,1))):
a := n -> denom(ep(n)/n!): seq(a(n), n=0..24); # version 3 (End)
-
nn = 24; Denominator[CoefficientList[Series[Sec[x] + Tan[x], {x, 0, nn}], x]] (* T. D. Noe, Jul 24 2013 *)
Table[If[n==0,1,2 I ^(n+1) PolyLog[-n, -I] / n!], {n,0,24}] // Denominator (* Peter Luschny, Aug 03 2017 *)
Table[2 (1 + Mod[n, 2]) LerchPhi[(-1)^(n+1), n+1, 1/2] / Pi^(n+1), {n, 0, 24}] // Denominator (* Peter Luschny, Aug 03 2017 *)
A328186
Write 1/(1 + sin x) = Product_{n>=1} (1 + f_n x^n); a(n) = denominator(f_n).
Original entry on oeis.org
1, 1, 6, 6, 120, 360, 5040, 2520, 72576, 1814400, 39916800, 59875200, 1245404160, 21794572800, 1307674368000, 81729648000, 71137485619200, 3201186852864000, 121645100408832000, 12164510040883200, 10218188434341888000, 281000181944401920000, 25852016738884976640000
Offset: 1
f_n = -1, 1, 1/6, 5/6, 19/120, -47/360, 659/5040, 1837/2520, 7675/72576, -154729/1814400, 3578279/39916800, 3984853/59875200, 95259767/1245404160, ...
- Giedrius Alkauskas, One curious proof of Fermat's little theorem, arXiv:0801.0805 [math.NT], 2008.
- Giedrius Alkauskas, A curious proof of Fermat's little theorem, Amer. Math. Monthly 116(4) (2009), 362-364.
- H. Gingold, H. W. Gould, and Michael E. Mays, Power Product Expansions, Utilitas Mathematica 34 (1988), 143-161.
- H. Gingold and A. Knopfmacher, Analytic properties of power product expansions, Canad. J. Math. 47 (1995), 1219-1239.
- W. Lang, Recurrences for the general problem, 2009.
-
# Calculates the fractions f_n (choose L much larger than M):
PPE := proc(L, M)
local t1, t0, g, t2, n, t3;
if L < 2.5*M then print("Choose larger value for L");
else
t1 := 1/(1 + sin(x));
t0 := series(t1, x, L);
f := []; t2 := t0;
for n to M do
t3 := coeff(t2, x, n);
t2 := series(t2/(1 + t3*x^n), x, L);
f := [op(f), t3];
end do;
end if;
[seq(f[n], n = 1 .. nops(f))];
end proc;
# Calculates the denominators of f_n:
h := map(denom, PPE(100, 40)); # Petros Hadjicostas, Oct 06 2019 by modifying N. J. A. Sloane's program from A170912 and A170913.
-
A[m_, n_] :=
A[m, n] =
Which[m == 1, 2*(-1)^n*I^(n + 2)*PolyLog[-(n + 1), -I]/n!,
m > n >= 1, 0, True,
A[m - 1, n] - A[m - 1, m - 1]*A[m, n - m + 1]];
a[n_] := Denominator[A[n, n]];
a /@ Range[1, 55] (* Petros Hadjicostas, Oct 06 2019 using a program by Jean-François Alcover and a formula from A099612 and A099617 *)
A328191
Write 1/(1 + sin x) = Product_{n>=1} (1 + f_n x^n); a(n) = numerator(f_n).
Original entry on oeis.org
-1, 1, 1, 5, 19, -47, 659, 1837, 7675, -154729, 3578279, 3984853, 95259767, -1364856587, 85215100151, 46900690817, 4180679675171, -157452879103733, 6399968826052559, 893237028559439, 478887035449041839, -11642446645024341437, 1123931378903214542099, 15392026390952264029
Offset: 1
f_n = -1, 1, 1/6, 5/6, 19/120, -47/360, 659/5040, 1837/2520, 7675/72576, -154729/1814400, 3578279/39916800, 3984853/59875200, 95259767/1245404160, ...
- Giedrius Alkauskas, One curious proof of Fermat's little theorem, arXiv:0801.0805 [math.NT], 2008.
- Giedrius Alkauskas, A curious proof of Fermat's little theorem, Amer. Math. Monthly 116(4) (2009), 362-364.
- H. Gingold, H. W. Gould, and Michael E. Mays, Power Product Expansions, Utilitas Mathematica 34 (1988), 143-161.
- H. Gingold and A. Knopfmacher, Analytic properties of power product expansions, Canad. J. Math. 47 (1995), 1219-1239.
- W. Lang, Recurrences for the general problem, 2009.
-
# Calculates the fractions f_n (choose L much larger than M):
PPE := proc(L, M)
local t1, t0, g, t2, n, t3;
if L < 2.5*M then print("Choose larger value for L");
else
t1 := 1/(1 + sin(x));
t0 := series(t1, x, L);
f := []; t2 := t0;
for n to M do
t3 := coeff(t2, x, n);
t2 := series(t2/(1 + t3*x^n), x, L);
f := [op(f), t3];
end do;
end if;
[seq(f[n], n = 1 .. nops(f))];
end proc;
# Calculates the numerators of f_n:
h:=map(numer, PPE(100, 40)); # Petros Hadjicostas, Oct 07 2019 by modifying N. J. A. Sloane's program from A170912 and A170913.
-
A[m_, n_] :=
A[m, n] =
Which[m == 1, 2*(-1)^n*I^(n + 2)*PolyLog[-(n + 1), -I]/n!,
m > n >= 1, 0, True,
A[m - 1, n] - A[m - 1, m - 1]*A[m, n - m + 1]];
a[n_] := Numerator[A[n, n]];
a /@ Range[1, 55] (* Petros Hadjicostas, Oct 07 2019 using a program by Jean-François Alcover and a formula from A099612 and A099617 *)
Showing 1-4 of 4 results.
Comments