A170915
Write 1 + sin x = Product_{n>=1} (1 + g_n * x^n); a(n) = denominator(g_n).
Original entry on oeis.org
1, 1, 6, 6, 120, 120, 5040, 280, 72576, 362880, 39916800, 11975040, 1245404160, 88957440, 1307674368000, 11675664000, 71137485619200, 1067062284288000, 121645100408832000, 101370917007360000, 10218188434341888000, 5109094217170944000, 25852016738884976640000
Offset: 1
g_n = 1, 0, -1/6, 1/6, -19/120, 19/120, -659/5040, 37/280, -7675/72576, ...
- Giedrius Alkauskas, One curious proof of Fermat's little theorem, arXiv:0801.0805 [math.NT], 2008.
- Giedrius Alkauskas, A curious proof of Fermat's little theorem, Amer. Math. Monthly 116(4) (2009), 362-364.
- H. Gingold, H. W. Gould, and Michael E. Mays, Power Product Expansions, Utilitas Mathematica 34 (1988), 143-161.
- H. Gingold and A. Knopfmacher, Analytic properties of power product expansions, Canad. J. Math. 47 (1995), 1219-1239.
- W. Lang, Recurrences for the general problem, 2009.
-
# Calculates the fractions g_n (choose L much larger than M):
PPE_sin := proc(L, M)
local t1, t0, g, t2, n, t3;
if L < 2.5*M then print("Choose larger value for L");
else
t1 := 1 + sin(x);
t0 := series(t1, x, L);
g := []; t2 := t0;
for n to M do
t3 := coeff(t2, x, n);
t2 := series(t2/(1 + t3*x^n), x, L);
g := [op(g), t3];
end do;
end if;
[seq(g[n], n = 1 .. nops(g))];
end proc;
# Calculates the denominators of g_n:
h1 := map(denom, PPE_sin(100, 40)); # Petros Hadjicostas, Oct 06 2019 by modifying N. J. A. Sloane's program from A170912 and A170913.
-
A[m_, n_] :=
A[m, n] =
Which[m == 1, (1-(-1)^n)*(-1)^Floor[(n-1)/2]/(2*n!), m > n >= 1, 0, True,
A[m - 1, n] - A[m - 1, m - 1]*A[m, n - m + 1]];
a[n_] := Denominator[A[n, n]];
a /@ Range[1, 55] (* Petros Hadjicostas, Oct 06 2019, courtesy of Jean-François Alcover *)
A170914
Write 1 + sin x = Product_{n>=1} (1 + g_n * x^n); a(n) = numerator(g_n).
Original entry on oeis.org
1, 0, -1, 1, -19, 19, -659, 37, -7675, 40043, -3578279, 1123009, -95259767, 7091713, -85215100151, 832857559, -4180679675171, 63804880881241, -6399968826052559, 5697831990097981, -478887035449041839, 252737248941887573, -1123931378903214542099, 35703551772944759
Offset: 1
g_n = 1, 0, -1/6, 1/6, -19/120, 19/120, -659/5040, 37/280, -7675/72576, ...
- Giedrius Alkauskas, One curious proof of Fermat's little theorem, arXiv:0801.0805 [math.NT], 2008.
- Giedrius Alkauskas, A curious proof of Fermat's little theorem, Amer. Math. Monthly 116(4) (2009), 362-364.
- H. Gingold, H. W. Gould, and Michael E. Mays, Power Product Expansions, Utilitas Mathematica 34 (1988), 143-161.
- H. Gingold and A. Knopfmacher, Analytic properties of power product expansions, Canad. J. Math. 47 (1995), 1219-1239.
- W. Lang, Recurrences for the general problem, 2009.
-
# Calculates the fractions g_n (choose L much larger than M):
PPE_sin := proc(L, M)
local t1, t0, g, t2, n, t3;
if L < 2.5*M then print("Choose larger value for L");
else
t1 := 1 + sin(x);
t0 := series(t1, x, L);
g := []; t2 := t0;
for n to M do
t3 := coeff(t2, x, n);
t2 := series(t2/(1 + t3*x^n), x, L);
g := [op(g), t3];
end do;
end if;
[seq(g[n], n = 1 .. nops(g))];
end proc;
# Calculates the numerators of g_n:
h1 := map(numer, PPE_sin(100, 40)); # Petros Hadjicostas, Oct 06 2019 by modifying N. J. A. Sloane's program from A170912 and A170913.
-
A[m_, n_] :=
A[m, n] =
Which[m == 1, (1-(-1)^n)*(-1)^Floor[(n-1)/2]/(2*n!), m > n >= 1, 0, True,
A[m - 1, n] - A[m - 1, m - 1]*A[m, n - m + 1]];
a[n_] := Numerator[A[n, n]];
a /@ Range[1, 55] (* Petros Hadjicostas, Oct 06 2019, courtesy of Jean-François Alcover *)
A354055
Product_{n>=1} 1 / (1 - x^n)^(a(n)/n!) = 1 + sin(x).
Original entry on oeis.org
1, -2, -1, 4, -19, 164, -659, 1408, -18775, 642224, -3578279, -21642752, -476298835, 11904106304, 25626362581, 68669145088, -20903398375855, 212840905389824, -6399968826052559, -78465506362130432, 1010700510694925525, 101465632831736751104, -1123931378903214542099
Offset: 1
Cf.
A170914,
A170915,
A328186,
A328191,
A353607,
A353873,
A354056,
A354063,
A354064,
A354065,
A354066.
-
nmax = 23; CoefficientList[Series[Sum[MoebiusMu[k] Log[1 + Sin[x^k]]/k, {k, 1, nmax}], {x, 0, nmax}], x] Range[0, nmax]! // Rest
A328191
Write 1/(1 + sin x) = Product_{n>=1} (1 + f_n x^n); a(n) = numerator(f_n).
Original entry on oeis.org
-1, 1, 1, 5, 19, -47, 659, 1837, 7675, -154729, 3578279, 3984853, 95259767, -1364856587, 85215100151, 46900690817, 4180679675171, -157452879103733, 6399968826052559, 893237028559439, 478887035449041839, -11642446645024341437, 1123931378903214542099, 15392026390952264029
Offset: 1
f_n = -1, 1, 1/6, 5/6, 19/120, -47/360, 659/5040, 1837/2520, 7675/72576, -154729/1814400, 3578279/39916800, 3984853/59875200, 95259767/1245404160, ...
- Giedrius Alkauskas, One curious proof of Fermat's little theorem, arXiv:0801.0805 [math.NT], 2008.
- Giedrius Alkauskas, A curious proof of Fermat's little theorem, Amer. Math. Monthly 116(4) (2009), 362-364.
- H. Gingold, H. W. Gould, and Michael E. Mays, Power Product Expansions, Utilitas Mathematica 34 (1988), 143-161.
- H. Gingold and A. Knopfmacher, Analytic properties of power product expansions, Canad. J. Math. 47 (1995), 1219-1239.
- W. Lang, Recurrences for the general problem, 2009.
-
# Calculates the fractions f_n (choose L much larger than M):
PPE := proc(L, M)
local t1, t0, g, t2, n, t3;
if L < 2.5*M then print("Choose larger value for L");
else
t1 := 1/(1 + sin(x));
t0 := series(t1, x, L);
f := []; t2 := t0;
for n to M do
t3 := coeff(t2, x, n);
t2 := series(t2/(1 + t3*x^n), x, L);
f := [op(f), t3];
end do;
end if;
[seq(f[n], n = 1 .. nops(f))];
end proc;
# Calculates the numerators of f_n:
h:=map(numer, PPE(100, 40)); # Petros Hadjicostas, Oct 07 2019 by modifying N. J. A. Sloane's program from A170912 and A170913.
-
A[m_, n_] :=
A[m, n] =
Which[m == 1, 2*(-1)^n*I^(n + 2)*PolyLog[-(n + 1), -I]/n!,
m > n >= 1, 0, True,
A[m - 1, n] - A[m - 1, m - 1]*A[m, n - m + 1]];
a[n_] := Numerator[A[n, n]];
a /@ Range[1, 55] (* Petros Hadjicostas, Oct 07 2019 using a program by Jean-François Alcover and a formula from A099612 and A099617 *)
A353873
Product_{n>=1} 1 / (1 - a(n)*x^n/n!) = 1 + sin(x).
Original entry on oeis.org
1, -2, -1, -20, -19, 94, -659, -29392, -38375, 309458, -3578279, -31878824, -476298835, 5459426348, -85215100151, -12006576849152, -20903398375855, 314905758207466, -6399968826052559, -178647405711887800, -2394435177245209195, 46569786580097365748
Offset: 1
-
nn = 22; f[x_] := Product[1/(1 - a[n] x^n/n!), {n, 1, nn}]; sol = SolveAlways[0 == Series[f[x] - 1 - Sin[x], {x, 0, nn}], x]; Table[a[n], {n, 1, nn}] /. sol // Flatten
A354171
Product_{n>=1} (1 + x^n)^(a(n)/n!) = 1 + sin(x).
Original entry on oeis.org
1, 0, -1, 4, -19, 44, -659, 8128, -18775, 67664, -3578279, 7629568, -476298835, 505198784, 25626362581, 4286437900288, -20903398375855, -118410655250176, -6399968826052559, -33100680116191232, 1010700510694925525, 706348515575880704, -1123931378903214542099
Offset: 1
Cf.
A067856,
A170914,
A170915,
A328186,
A328191,
A353607,
A353873,
A354055,
A354172,
A354173,
A354174,
A354175,
A354176.
-
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[c[i], j] b[n - i j, i - 1], {j, 0, n/i}]]]; c[n_] := c[n] = {1, 0, -1, 0}[[Mod[n, 4, 1]]]/n! - b[n, n - 1]; a[n_] := n! c[n]; Table[a[n], {n, 1, 23}]
Showing 1-6 of 6 results.
Comments