cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A278502 a(n) = A046523(A279338(n)).

Original entry on oeis.org

1, 2, 2, 2, 4, 6, 2, 4, 6, 6, 2, 8, 12, 6, 4, 6, 12, 6, 2, 12, 30, 8, 12, 6, 6, 4, 16, 24, 12, 12, 6, 12, 30, 6, 2, 36, 30, 12, 30, 6, 8, 12, 24, 60, 24, 6, 6, 60, 4, 16, 12, 30, 24, 12, 12, 12, 6, 32, 48, 24, 36, 30, 12, 30, 60, 6, 2, 60, 30, 36, 30, 6, 12, 30, 72, 60, 60, 6, 8, 210, 12, 24, 12, 24, 60, 24, 60, 6, 6, 48, 120, 72, 30, 60, 4, 30, 16, 12, 180
Offset: 1

Views

Author

Antti Karttunen, Dec 10 2016

Keywords

Crossrefs

Programs

Formula

a(n) = A046523(A279338(n)).

A156552 Unary-encoded compressed factorization of natural numbers.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 8, 7, 6, 9, 16, 11, 32, 17, 10, 15, 64, 13, 128, 19, 18, 33, 256, 23, 12, 65, 14, 35, 512, 21, 1024, 31, 34, 129, 20, 27, 2048, 257, 66, 39, 4096, 37, 8192, 67, 22, 513, 16384, 47, 24, 25, 130, 131, 32768, 29, 36, 71, 258, 1025, 65536, 43, 131072, 2049, 38, 63, 68, 69, 262144
Offset: 1

Views

Author

Leonid Broukhis, Feb 09 2009

Keywords

Comments

The primes become the powers of 2 (2 -> 1, 3 -> 2, 5 -> 4, 7 -> 8); the composite numbers are formed by taking the values for the factors in the increasing order, multiplying them by the consecutive powers of 2, and summing. See the Example section.
From Antti Karttunen, Jun 27 2014: (Start)
The odd bisection (containing even terms) halved gives A244153.
The even bisection (containing odd terms), when one is subtracted from each and halved, gives this sequence back.
(End)
Question: Are there any other solutions that would satisfy the recurrence r(1) = 0; and for n > 1, r(n) = Sum_{d|n, d>1} 2^A033265(r(d)), apart from simple variants 2^k * A156552(n)? See also A297112, A297113. - Antti Karttunen, Dec 30 2017

Examples

			For 84 = 2*2*3*7 -> 1*1 + 1*2 + 2*4 + 8*8 =  75.
For 105 = 3*5*7 -> 2*1 + 4*2 + 8*4 = 42.
For 137 = p_33 -> 2^32 = 4294967296.
For 420 = 2*2*3*5*7 -> 1*1 + 1*2 + 2*4 + 4*8 + 8*16 = 171.
For 147 = 3*7*7 = p_2 * p_4 * p_4 -> 2*1 + 8*2 + 8*4 = 50.
		

Crossrefs

One less than A005941.
Inverse permutation: A005940 with starting offset 0 instead of 1.
Cf. also A297106, A297112 (Möbius transform), A297113, A153013, A290308, A300827, A323243, A323244, A323247, A324201, A324812 (n for which a(n) is a square), A324813, A324822, A324823, A324398, A324713, A324815, A324819, A324865, A324866, A324867.

Programs

  • Mathematica
    Table[Floor@ Total@ Flatten@ MapIndexed[#1 2^(#2 - 1) &, Flatten[ Table[2^(PrimePi@ #1 - 1), {#2}] & @@@ FactorInteger@ n]], {n, 67}] (* Michael De Vlieger, Sep 08 2016 *)
  • PARI
    a(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ David A. Corneth, Mar 08 2019
    
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n)))); \\ (based on the given recurrence) - Antti Karttunen, Mar 08 2019
    
  • Perl
    # Program corrected per instructions from Leonid Broukhis. - Antti Karttunen, Jun 26 2014
    # However, it gives correct answers only up to n=136, before corruption by a wrap-around effect.
    # Note that the correct answer for n=137 is A156552(137) = 4294967296.
    $max = $ARGV[0];
    $pow = 0;
    foreach $i (2..$max) {
    @a = split(/ /, `factor $i`);
    shift @a;
    $shift = 0;
    $cur = 0;
    while ($n = int shift @a) {
    $prime{$n} = 1 << $pow++ if !defined($prime{$n});
    $cur |= $prime{$n} << $shift++;
    }
    print "$cur, ";
    }
    print "\n";
    (Scheme, with memoization-macro definec from Antti Karttunen's IntSeq-library, two different implementations)
    (definec (A156552 n) (cond ((= n 1) 0) (else (+ (A000079 (+ -2 (A001222 n) (A061395 n))) (A156552 (A052126 n))))))
    (definec (A156552 n) (cond ((= 1 n) (- n 1)) ((even? n) (+ 1 (* 2 (A156552 (/ n 2))))) (else (* 2 (A156552 (A064989 n))))))
    ;; Antti Karttunen, Jun 26 2014
    
  • Python
    from sympy import primepi, factorint
    def A156552(n): return sum((1<Chai Wah Wu, Mar 10 2023

Formula

From Antti Karttunen, Jun 26 2014: (Start)
a(1) = 0, a(n) = A000079(A001222(n)+A061395(n)-2) + a(A052126(n)).
a(1) = 0, a(2n) = 1+2*a(n), a(2n+1) = 2*a(A064989(2n+1)). [Compare to the entanglement recurrence A243071].
For n >= 0, a(2n+1) = 2*A244153(n+1). [Follows from the latter clause of the above formula.]
a(n) = A005941(n) - 1.
As a composition of related permutations:
a(n) = A003188(A243354(n)).
a(n) = A054429(A243071(n)).
For all n >= 1, A005940(1+a(n)) = n and for all n >= 0, a(A005940(n+1)) = n. [The offset-0 version of A005940 works as an inverse for this permutation.]
This permutations also maps between the partition-lists A112798 and A125106:
A056239(n) = A161511(a(n)). [The sums of parts of each partition (the total sizes).]
A003963(n) = A243499(a(n)). [And also the products of those parts.]
(End)
From Antti Karttunen, Oct 09 2016: (Start)
A161511(a(n)) = A056239(n).
A029837(1+a(n)) = A252464(n). [Binary width of terms.]
A080791(a(n)) = A252735(n). [Number of nonleading 0-bits.]
A000120(a(n)) = A001222(n). [Binary weight.]
For all n >= 2, A001511(a(n)) = A055396(n).
For all n >= 2, A000120(a(n))-1 = A252736(n). [Binary weight minus one.]
A252750(a(n)) = A252748(n).
a(A250246(n)) = A252754(n).
a(A005117(n)) = A277010(n). [Maps squarefree numbers to a permutation of A003714, fibbinary numbers.]
A085357(a(n)) = A008966(n). [Ditto for their characteristic functions.]
For all n >= 0:
a(A276076(n)) = A277012(n).
a(A276086(n)) = A277022(n).
a(A260443(n)) = A277020(n).
(End)
From Antti Karttunen, Dec 30 2017: (Start)
For n > 1, a(n) = Sum_{d|n, d>1} 2^A033265(a(d)). [See comments.]
More linking formulas:
A106737(a(n)) = A000005(n).
A290077(a(n)) = A000010(n).
A069010(a(n)) = A001221(n).
A136277(a(n)) = A181591(n).
A132971(a(n)) = A008683(n).
A106400(a(n)) = A008836(n).
A268411(a(n)) = A092248(n).
A037011(a(n)) = A010052(n) [conjectured, depends on the exact definition of A037011].
A278161(a(n)) = A046951(n).
A001316(a(n)) = A061142(n).
A277561(a(n)) = A034444(n).
A286575(a(n)) = A037445(n).
A246029(a(n)) = A181819(n).
A278159(a(n)) = A124859(n).
A246660(a(n)) = A112624(n).
A246596(a(n)) = A069739(n).
A295896(a(n)) = A053866(n).
A295875(a(n)) = A295297(n).
A284569(a(n)) = A072411(n).
A286574(a(n)) = A064547(n).
A048735(a(n)) = A292380(n).
A292272(a(n)) = A292382(n).
A244154(a(n)) = A048673(n), a(A064216(n)) = A244153(n).
A279344(a(n)) = A279339(n), a(A279338(n)) = A279343(n).
a(A277324(n)) = A277189(n).
A037800(a(n)) = A297155(n).
For n > 1, A033265(a(n)) = 1+A297113(n).
(End)
From Antti Karttunen, Mar 08 2019: (Start)
a(n) = A048675(n) + A323905(n).
a(A324201(n)) = A000396(n), provided there are no odd perfect numbers.
The following sequences are derived from or related to the base-2 expansion of a(n):
A000265(a(n)) = A322993(n).
A002487(a(n)) = A323902(n).
A005187(a(n)) = A323247(n).
A324288(a(n)) = A324116(n).
A323505(a(n)) = A323508(n).
A079559(a(n)) = A323512(n).
A085405(a(n)) = A323239(n).
The following sequences are obtained by applying to a(n) a function that depends on the prime factorization of its argument, which goes "against the grain" because a(n) is the binary code of the factorization of n, which in these cases is then factored again:
A000203(a(n)) = A323243(n).
A033879(a(n)) = A323244(n) = 2*a(n) - A323243(n),
A294898(a(n)) = A323248(n).
A000005(a(n)) = A324105(n).
A000010(a(n)) = A324104(n).
A083254(a(n)) = A324103(n).
A001227(a(n)) = A324117(n).
A000593(a(n)) = A324118(n).
A001221(a(n)) = A324119(n).
A009194(a(n)) = A324396(n).
A318458(a(n)) = A324398(n).
A192895(a(n)) = A324100(n).
A106315(a(n)) = A324051(n).
A010052(a(n)) = A324822(n).
A053866(a(n)) = A324823(n).
A001065(a(n)) = A324865(n) = A323243(n) - a(n),
A318456(a(n)) = A324866(n) = A324865(n) OR a(n),
A318457(a(n)) = A324867(n) = A324865(n) XOR a(n),
A318458(a(n)) = A324398(n) = A324865(n) AND a(n),
A318466(a(n)) = A324819(n) = A323243(n) OR 2*a(n),
A318467(a(n)) = A324713(n) = A323243(n) XOR 2*a(n),
A318468(a(n)) = A324815(n) = A323243(n) AND 2*a(n).
(End)

Extensions

More terms from Antti Karttunen, Jun 28 2014

A163511 a(0)=1. a(n) = p(A000120(n)) * Product_{m=1..A000120(n)} p(m)^A163510(n,m), where p(m) is the m-th prime.

Original entry on oeis.org

1, 2, 4, 3, 8, 9, 6, 5, 16, 27, 18, 25, 12, 15, 10, 7, 32, 81, 54, 125, 36, 75, 50, 49, 24, 45, 30, 35, 20, 21, 14, 11, 64, 243, 162, 625, 108, 375, 250, 343, 72, 225, 150, 245, 100, 147, 98, 121, 48, 135, 90, 175, 60, 105, 70, 77, 40, 63, 42, 55, 28, 33, 22, 13, 128
Offset: 0

Views

Author

Leroy Quet, Jul 29 2009

Keywords

Comments

This is a permutation of the positive integers.
From Antti Karttunen, Jun 20 2014: (Start)
Note the indexing: the domain starts from 0, while the range excludes zero, thus this is neither a bijection on the set of nonnegative integers nor on the set of positive natural numbers, but a bijection from the former set to the latter.
Apart from that discrepancy, this could be viewed as yet another "entanglement permutation" where the two complementary pairs to be interwoven together are even and odd numbers (A005843/A005408) which are entangled with the complementary pair even numbers (taken straight) and odd numbers in the order they appear in A003961: (A005843/A003961). See also A246375 which has almost the same recurrence.
Note how the even bisection halved gives the same sequence back. (For a(0)=1, take ceiling of 1/2).
(End)
From Antti Karttunen, Dec 30 2017: (Start)
This irregular table can be represented as a binary tree. Each child to the left is obtained by doubling the parent, and each child to the right is obtained by applying A003961 to the parent:
1
|
...................2...................
4 3
8......../ \........9 6......../ \........5
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
16 27 18 25 12 15 10 7
32 81 54 125 36 75 50 49 24 45 30 35 20 21 14 11
etc.
Sequence A005940 is obtained by scanning the same tree level by level in mirror image fashion. Also in binary trees A253563 and A253565 the terms on level of the tree are some permutation of the terms present on the level n of this tree. A252464(n) gives the distance of n from 1 in all these trees, and A252463 gives the parent of the node containing n.
A252737(n) gives the sum and A252738(n) the product of terms on row n (where 1 is on row 0, 1 on row 1, 3 and 4 on row 2, etc.). A252745(n) gives the number of nodes on level n whose left child is smaller than the right child, and A252744(n) is an indicator function for those nodes.
(End)
Note that the idea behind maps like this (and the mirror image A005940) admits also using alternative orderings of primes, not just standard magnitude-wise ordering (A000040). For example, A332214 is a similar sequence but with primes rearranged as in A332211, and A332817 is obtained when primes are rearranged as in A108546. - Antti Karttunen, Mar 11 2020
From Lorenzo Sauras Altuzarra, Nov 28 2020: (Start)
This sequence is generated from A228351 by applying the following procedure: 1) eliminate the compositions that end in one unless the first one, 2) subtract one unit from every component, 3) replace every tuple [t_1, ..., t_r] by Product_{k=1..r} A000040(k)^(t_k) (see the examples).
Is it true that a(n) = A337909(n+1) if and only if a(n+1) is not a term of A161992?
Does this permutation have any other cycle apart from (1), (2) and (6, 9, 16, 7)? (End)
From Antti Karttunen, Jul 25 2023: (Start)
(In the above question, it is assumed that the starting offset would be 1 instead of 0).
Questions:
Does a(n) = 1+A054429(n) hold only when n is of the form 2^k times 1, 3 or 7, i.e., one of the terms of A029748?
It seems that A007283 gives all fixed points of map n -> a(n), like A335431 seems to give all fixed points of map n -> A332214(n). Is there a general rule for mappings like these that the fixed points (if they exist) must be of the form 2^k times a certain kind of prime, i.e., that any odd composite (times 2^k) can certainly be excluded? See also note in A029747.
(End)
If the conjecture given in A364297 holds, then it implies the above conjecture about A007283. See also A364963. - Antti Karttunen, Sep 06 2023
Conjecture: a(n^k) is never of the form x^k, for any integers n > 0, k > 1, x >= 1. This holds at least for squares, cubes, seventh and eleventh powers (see A365808, A365801, A366287 and A366391). - Antti Karttunen, Sep 24 2023, Oct 10 2023.
See A365805 for why the above holds for any n^k, with k > 1. - Antti Karttunen, Nov 23 2023

Examples

			For n=3, whose binary representation is "11", we have A000120(3)=2, with A163510(3,1) = A163510(3,2) = 0, thus a(3) = p(2) * p(1)^0 * p(2)^0 = 3*1*1 = 3.
For n=9, "1001" in binary, we have A000120(9)=2, with A163510(9,1) = 0 and A163510(9,2) = 2, thus a(9) = p(2) * p(1)^0 * p(2)^2 = 3*1*9 = 27.
For n=10, "1010" in binary, we have A000120(10)=2, with A163510(10,1) = 1 and A163510(10,2) = 1, thus a(10) = p(2) * p(1)^1 * p(2)^1 = 3*2*3 = 18.
For n=15, "1111" in binary, we have A000120(15)=4, with A163510(15,1) = A163510(15,2) = A163510(15,3) = A163510(15,4) = 0, thus a(15) = p(4) * p(1)^0 * p(2)^0 * p(3)^0 * p(4)^0 = 7*1*1*1*1 = 7.
[1], [2], [1,1], [3], [1,2], [2,1] ... -> [1], [2], [3], [1,2], ... -> [0], [1], [2], [0,1], ... -> 2^0, 2^1, 2^2, 2^0*3^1, ... = 1, 2, 4, 3, ... - _Lorenzo Sauras Altuzarra_, Nov 28 2020
		

Crossrefs

Inverse: A243071.
Cf. A007283 (known positions where a(n)=n), A029747, A029748, A364255 [= gcd(n,a(n))], A364258 [= a(n)-n], A364287 (where a(n) < n), A364292 (where a(n) <= n), A364494 (where n|a(n)), A364496 (where a(n)|n), A364963, A364297.
Cf. A365808 (positions of squares), A365801 (of cubes), A365802 (of fifth powers), A365805 [= A052409(a(n))], A366287, A366391.
Cf. A005940, A332214, A332817, A366275 (variants).

Programs

  • Mathematica
    f[n_] := Reverse@ Map[Ceiling[(Length@ # - 1)/2] &, DeleteCases[Split@ Join[Riffle[IntegerDigits[n, 2], 0], {0}], {k__} /; k == 1]]; {1}~Join~
    Table[Function[t, Prime[t] Product[Prime[m]^(f[n][[m]]), {m, t}]][DigitCount[n, 2, 1]], {n, 120}] (* Michael De Vlieger, Jul 25 2016 *)
  • Python
    from sympy import prime
    def A163511(n):
        if n:
            k, c, m = n, 0, 1
            while k:
                c += 1
                m *= prime(c)**(s:=(~k&k-1).bit_length())
                k >>= s+1
            return m*prime(c)
        return 1 # Chai Wah Wu, Jul 17 2023

Formula

For n >= 1, a(2n) is even, a(2n+1) is odd. a(2^k) = 2^(k+1), for all k >= 0.
From Antti Karttunen, Jun 20 2014: (Start)
a(0) = 1, a(1) = 2, a(2n) = 2*a(n), a(2n+1) = A003961(a(n)).
As a more general observation about the parity, we have:
For n >= 1, A007814(a(n)) = A135523(n) = A007814(n) + A209229(n). [This permutation preserves the 2-adic valuation of n, except when n is a power of two, in which cases that value is incremented by one.]
For n >= 1, A055396(a(n)) = A091090(n) = A007814(n+1) + 1 - A036987(n).
For n >= 1, a(A000225(n)) = A000040(n).
(End)
From Antti Karttunen, Oct 11 2014: (Start)
As a composition of related permutations:
a(n) = A005940(1+A054429(n)).
a(n) = A064216(A245612(n))
a(n) = A246681(A246378(n)).
Also, for all n >= 0, it holds that:
A161511(n) = A243503(a(n)).
A243499(n) = A243504(a(n)).
(End)
More linking identities from Antti Karttunen, Dec 30 2017: (Start)
A046523(a(n)) = A278531(n). [See also A286531.]
A278224(a(n)) = A285713(n). [Another filter-sequence.]
A048675(a(n)) = A135529(n) seems to hold for n >= 1.
A250245(a(n)) = A252755(n).
A252742(a(n)) = A252744(n).
A245611(a(n)) = A253891(n).
A249824(a(n)) = A275716(n).
A292263(a(n)) = A292264(n). [A292944(n) + A292264(n) = n.]
--
A292383(a(n)) = A292274(n).
A292385(a(n)) = A292271(n). [A292271(n) + A292274(n) = n.]
--
A292941(a(n)) = A292942(n).
A292943(a(n)) = A292944(n).
A292945(a(n)) = A292946(n). [A292942(n) + A292944(n) + A292946(n) = n.]
--
A292253(a(n)) = A292254(n).
A292255(a(n)) = A292256(n). [A292944(n) + A292254(n) + A292256(n) = n.]
--
A279339(a(n)) = A279342(n).
a(A071574(n)) = A269847(n).
a(A279341(n)) = A279338(n).
a(A252756(n)) = A250246(n).
(1+A008836(a(n)))/2 = A059448(n).
(End)
From Antti Karttunen, Jul 26 2023: (Start)
For all n >= 0, a(A007283(n)) = A007283(n).
A001222(a(n)) = A290251(n).
(End)

Extensions

More terms computed and examples added by Antti Karttunen, Jun 20 2014

A279341 a(1) = 0, a(2) = 1, for n > 2, if A079559(n) = 0, a(n) = 2*a(A256992(n)), otherwise a(n) = 1 + 2*a(A256992(n)).

Original entry on oeis.org

0, 1, 3, 7, 2, 6, 15, 5, 14, 13, 31, 4, 12, 30, 11, 29, 10, 27, 63, 28, 26, 9, 25, 62, 61, 23, 8, 24, 60, 22, 59, 21, 58, 55, 127, 20, 54, 57, 53, 126, 19, 51, 56, 52, 18, 125, 123, 50, 47, 17, 124, 122, 49, 121, 46, 45, 119, 16, 48, 120, 44, 118, 43, 117, 42, 111, 255, 116, 110, 41, 109, 254, 115, 107, 40, 108, 114, 253, 39, 106, 103
Offset: 1

Views

Author

Antti Karttunen, Dec 10 2016

Keywords

Comments

Note the indexing: the domain starts from 1, while the range includes also zero.

Crossrefs

Inverse: A279342.
Related or similar permutations: A054429, A243071, A279338, A279343, A279347.

Programs

Formula

a(1) = 0, a(2) = 1, for n > 2, if A079559(n) = 0 [when n is a term of A055938], a(n) = 2*a(A256992(n)), otherwise a(n) = 1 + 2*a(A256992(n)).
As a composition of other permutations:
a(n) = A054429(A279343(n)).
a(n) = A279343(A279347(n)).
a(n) = A243071(A279338(n)).
Other identities. For all n >= 1:
A000120(a(n)) = A279345(n).
For all n >= 2, A070939(a(n)) = A256993(n).

A279343 a(1) = 0, and for n > 1, if A079559(n) = 0, a(n) = 1 + 2*a(A256992(n)), otherwise a(n) = 2*a(A256992(n)).

Original entry on oeis.org

0, 1, 2, 4, 3, 5, 8, 6, 9, 10, 16, 7, 11, 17, 12, 18, 13, 20, 32, 19, 21, 14, 22, 33, 34, 24, 15, 23, 35, 25, 36, 26, 37, 40, 64, 27, 41, 38, 42, 65, 28, 44, 39, 43, 29, 66, 68, 45, 48, 30, 67, 69, 46, 70, 49, 50, 72, 31, 47, 71, 51, 73, 52, 74, 53, 80, 128, 75, 81, 54, 82, 129, 76, 84, 55, 83, 77, 130, 56, 85, 88, 78, 131, 57, 86
Offset: 1

Views

Author

Antti Karttunen, Dec 10 2016

Keywords

Comments

Note the indexing: the domain starts from 1, while the range includes also zero.

Crossrefs

Inverse: A279344.
Related or similar permutations: A054429, A156552, A279338, A279341, A279347.

Programs

Formula

a(1) = 0, and for n > 1, if A079559(n) = 0 [when n is a term of A055938], a(n) = 1 + 2*a(A256992(n)), otherwise a(n) = 2*a(A256992(n)).
As a composition of other permutations:
a(n) = A054429(A279341(n)).
a(n) = A279341(A279347(n)).
a(n) = A156552(A279338(n)).
Other identities. For all n >= 1:
A000120(a(n)) = A279346(n).
For all n >= 2, A070939(a(n)) = A256993(n).

A279339 a(1) = 1; for n > 1, if n is even, a(n) = A055938(a(n/2)), otherwise a(n) = A005187(a(A064989(n))).

Original entry on oeis.org

1, 2, 3, 5, 4, 6, 7, 12, 8, 9, 11, 13, 19, 14, 10, 27, 35, 17, 67, 20, 16, 24, 131, 28, 15, 40, 22, 29, 259, 21, 515, 58, 25, 72, 18, 36, 1027, 136, 46, 43, 2051, 33, 4099, 51, 23, 264, 8195, 59, 26, 30, 78, 83, 16387, 45, 31, 60, 142, 520, 32771, 44, 65539, 1032, 38, 121, 47, 52, 131075, 147, 270, 37, 262147, 75, 524291, 2056, 32, 275, 34, 93
Offset: 1

Views

Author

Antti Karttunen, Dec 10 2016

Keywords

Comments

A more recursed variant of A279337.

Crossrefs

Inverse: A279338.
Related or similar permutations: A156552, A243071, A279337, A279342, A279344.

Programs

Formula

a(1) = 1; for n > 1, if n is even, a(n) = A055938(a(n/2)), otherwise a(n) = A005187(a(A064989(n))).
As a composition of other permutations:
a(n) = A279342(A243071(n)).
a(n) = A279344(A156552(n)).

A279336 Permutation of natural numbers: a(1) = 1; for n > 1, if A079559(n) = 0, a(n) = 2*A234016(n), otherwise a(n) = A003961(a(A213714(n))).

Original entry on oeis.org

1, 2, 3, 5, 4, 6, 7, 9, 8, 15, 11, 10, 12, 14, 25, 27, 16, 35, 13, 18, 20, 21, 45, 22, 33, 49, 24, 26, 28, 30, 125, 81, 32, 77, 17, 34, 36, 75, 63, 38, 55, 175, 40, 42, 44, 39, 65, 46, 121, 135, 48, 50, 51, 99, 52, 105, 343, 54, 56, 58, 60, 62, 625, 243, 64, 143, 19, 66, 68, 57, 225, 70, 245, 275, 72, 74, 76, 69, 91, 78, 539, 189, 80
Offset: 1

Views

Author

Antti Karttunen, Dec 10 2016

Keywords

Comments

For n > 1, a(n) = the number which is in the same position of array A246278 where n is located in array A256997.

Crossrefs

Inverse permutation: A279337.
Cf. also A278501, A279338 (a variant).

Programs

Formula

a(1) = 1, for n > 1, if A079559(n) = 0 [when n is a term of A055938], a(n) = 2*A234016(n), otherwise a(n) = A003961(a(A213714(n))).
Other identities:
For all n >= 2, a(n) = A246278(A256998(n)).

A279348 a(1) = 1, for n > 1, if A079559(n) = 0, a(n) = 2*a(A256992(n)), otherwise a(n) = A250469(a(A256992(n))).

Original entry on oeis.org

1, 2, 3, 5, 4, 6, 7, 9, 10, 15, 11, 8, 12, 14, 25, 27, 18, 35, 13, 20, 30, 21, 33, 22, 39, 49, 16, 24, 28, 50, 65, 51, 54, 77, 17, 36, 70, 57, 87, 26, 55, 85, 40, 60, 42, 63, 95, 66, 121, 45, 44, 78, 69, 81, 98, 147, 119, 32, 48, 56, 100, 130, 125, 159, 102, 143, 19, 108, 154, 105, 207, 34, 145, 215, 72, 140, 114, 75, 91, 174, 133, 117, 52
Offset: 1

Views

Author

Antti Karttunen, Dec 12 2016

Keywords

Crossrefs

Inverse: A279349.
Related or similar permutations: A250245, A252753, A252755, A279338, A279341, A279343.

Programs

Formula

a(1) = 1, for n > 1, if A079559(n) = 0 [when n is a term of A055938], a(n) = 2*a(A256992(n)), otherwise a(n) = A250469(a(A256992(n))).
As a composition of other permutations:
a(n) = A250245(A279338(n)).
a(n) = A252753(A279343(n)).
a(n) = A252755(A279341(n)).
Showing 1-8 of 8 results.