A279756 Smallest prime p >= prime(n) such that p == 2 (mod prime(n)).
2, 5, 7, 23, 13, 41, 19, 59, 71, 31, 157, 113, 43, 131, 331, 373, 61, 307, 337, 73, 367, 239, 251, 269, 293, 103, 311, 109, 547, 1019, 383, 919, 139, 419, 151, 757, 787, 491, 503, 521, 181, 907, 193, 967, 199, 599, 1901, 1117, 229, 2063, 701, 241, 3617, 1759, 773
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Programs
-
Maple
a:= proc(n) local q, p; p:= ithprime(n); q:= p; do if irem(q-2, p)=0 then break fi; q:= nextprime(q); od; q end: seq(a(n), n=1..55); # Alois P. Heinz, May 03 2021
-
Mathematica
a[n_] := Module[{p = Prime[n], q}, q = p; While[True, If[Mod[q-2, p] == 0, Break[], q = NextPrime[q]]]; q]; Table[a[n], {n, 1, 55}] (* Jean-François Alcover, Jun 13 2025, after Alois P. Heinz *)
-
PARI
a(n) = {p = prime(n); q = p; while (Mod(q, p) != 2, q = nextprime(q+1)); q;} \\ Michel Marcus, Dec 18 2016
-
Python
from itertools import dropwhile, count from sympy import isprime, prime def A279756(n): return next(dropwhile(lambda x:not isprime(x),count(2 if (p:=prime(n))==2 else p+2,p))) # Chai Wah Wu, Jan 04 2024
Comments