A343908 a(n) is the least prime == 4 (mod prime(n)).
2, 7, 19, 11, 37, 17, 89, 23, 73, 149, 97, 41, 127, 47, 239, 163, 181, 431, 71, 359, 223, 83, 419, 271, 101, 307, 107, 967, 113, 569, 131, 397, 1237, 421, 2239, 457, 1103, 167, 839, 523, 541, 547, 577, 197, 1777, 601, 1481, 227, 3863, 233, 3499, 2633, 727, 757, 1289, 1319, 811, 1901, 281, 1409
Offset: 1
Keywords
Examples
a(3) = 19 because 19 is the least prime == 4 (mod prime(3)). a(4) = 11 because 11 is the least prime == 4 (mod prime(4)).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Programs
-
Maple
a:= proc(n) local q, p; p:= ithprime(n); q:= p; do if irem(q-4, p)=0 then break fi; q:= nextprime(q); od; q end: seq(a(n), n=1..60); # Alois P. Heinz, May 03 2021
-
Mathematica
s = {}; p = 5; Do[q = p + 2; While[Mod[q, p] != 4, q = NextPrime[q]]; AppendTo[s, q]; p = NextPrime[p], {100}]; s
-
PARI
a(n) = my(p=prime(n)); forprime(q=2,, if (Mod(q, p) == 4, return(q))); \\ Michel Marcus, May 03 2021