A279789 Number of ways to choose a constant partition of each part of a constant partition of n.
1, 1, 3, 3, 8, 3, 17, 3, 30, 12, 41, 3, 130, 3, 137, 45, 359, 3, 656, 3, 1306, 141, 2057, 3, 5446, 36, 8201, 544, 18610, 3, 34969, 3, 72385, 2061, 131081, 165, 290362, 3, 524297, 8205, 1109206, 3, 2130073, 3, 4371490, 33594, 8388617, 3, 17445321, 132, 33556496
Offset: 0
Keywords
Examples
The a(6)=17 twice-constant partitions are: ((6)), ((3)(3)), ((33)), ((3)(111)), ((111)(3)), ((2)(2)(2)), ((222)), ((2)(2)(11)), ((2)(11)(2)), ((11)(2)(2)), ((2)(11)(11)), ((11)(2)(11)), ((11)(11)(2)), ((1)(1)(1)(1)(1)(1)), ((11)(11)(11)), ((111)(111)), ((111111)).
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..6643
- Gus Wiseman, Sequences enumerating triangles of integer partitions
Programs
-
Maple
with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(tau(n/d)^d, d=divisors(n))) end: seq(a(n), n=0..70); # Alois P. Heinz, Dec 20 2016
-
Mathematica
nn=20;Table[DivisorSum[n,Power[DivisorSigma[0,#],n/#]&],{n,nn}]
-
PARI
a(n)=if(n==0, 1, sumdiv(n, d, numdiv(n/d)^d)) \\ Andrew Howroyd, Aug 26 2018
Formula
a(n) = Sum_{d|n} tau(n/d)^d for n > 0. - Andrew Howroyd, Aug 26 2018
G.f.: 1 + Sum_{k>=1} tau(k)*x^k/(1 - tau(k)*x^k). - Ilya Gutkovskiy, May 23 2019
a(n) = 3 <=> n is prime <=> n in { A000040 }. - Alois P. Heinz, May 23 2019
Comments