cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A279847 a(n) = Sum_{k=1..n} k^2*(floor(n/k) - 1).

Original entry on oeis.org

0, 1, 2, 7, 8, 22, 23, 44, 54, 84, 85, 151, 152, 206, 241, 326, 327, 458, 459, 605, 664, 790, 791, 1065, 1091, 1265, 1356, 1622, 1623, 2023, 2024, 2365, 2496, 2790, 2865, 3480, 3481, 3847, 4026, 4636, 4637, 5373, 5374, 6000, 6341, 6875, 6876, 7982, 8032, 8787, 9086, 9952, 9953, 11137, 11284
Offset: 1

Views

Author

Ilya Gutkovskiy, Dec 20 2016

Keywords

Comments

Sum of all squares of proper divisors of all positive integers <= n.
Total volume of all rectangular prisms with dimensions (x, x, z) and integers x and y, such that x + y = n, 0 < x <= y, and z = floor(y/x). - Wesley Ivan Hurt, Dec 21 2020

Examples

			For n = 7 the proper divisors of the first seven positive integers are {0}, {1}, {1}, {1, 2}, {1}, {1, 2, 3}, {1} so a(7) = 0^2 + 1^2 + 1^2 + 1^2 + 2^2 + 1 ^2 + 1^2 + 2^2 + 3^2 + 1^2 = 23.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[k^2 (Floor[n/k] - 1), {k, 1, n}], {n, 55}]
    Table[Sum[DivisorSigma[2, k] - k^2, {k, 1, n}], {n, 55}]
  • PARI
    a(n) = sum(k=1, n, k^2*(floor(n/k)-1)) \\ Felix Fröhlich, Dec 20 2016
    
  • Python
    from math import isqrt
    def A279847(n): return (-n*(n+1)*(2*n+1)-(s:=isqrt(n))**2*(s+1)*(2*s+1) + sum((q:=n//k)*(6*k**2+q*(2*q+3)+1) for k in range(1,s+1)))//6 # Chai Wah Wu, Oct 21 2023

Formula

G.f.: -x*(1 + x)/(1 - x)^4 + (1/(1 - x))*Sum_{k>=1} k^2*x^k/(1 - x^k).
a(n) = A064602(n) - A000330(n).
a(n) = Sum_{k=1..n} A067558(k).
a(n) = Sum_{k=1..n} (A001157(k) - A000290(k)).
a(p^k) = a(p^k-1) + (p^(2*k) - 1)/(p^2 - 1), when p is prime.
a(n) ~ ((zeta(3) - 1)/3)*n^3.
a(n) = Sum_{k=1..floor(n/2)} k^2 * floor((n-k)/k). - Wesley Ivan Hurt, Dec 21 2020