cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A257994 Number of prime parts in the partition having Heinz number n.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 0, 0, 2, 1, 1, 1, 0, 0, 2, 0, 1, 2, 0, 1, 1, 1, 0, 1, 2, 0, 3, 0, 0, 2, 1, 0, 2, 1, 1, 2, 0, 0, 1, 1, 1, 1, 0, 1, 3, 0, 0, 1, 0, 2, 2, 0, 0, 3, 2, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 1, 1, 1, 1, 0, 2, 0, 0, 3, 0, 1, 1, 0, 1, 4, 1, 1, 1, 2, 0, 1, 1, 0, 3
Offset: 1

Views

Author

Emeric Deutsch, May 20 2015

Keywords

Comments

We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_j-th prime, j=1...r) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436.
In the Maple program the subprogram B yields the partition with Heinz number n.
The number of nonprime parts is given by A330944, so A001222(n) = a(n) + A330944(n). - Gus Wiseman, Jan 17 2020

Examples

			a(30) = 2 because the partition with Heinz number 30 = 2*3*5 is [1,2,3], having 2 prime parts.
		

References

  • George E. Andrews and Kimmo Eriksson, Integer Partitions, Cambridge Univ. Press, Cambridge, 2004.

Crossrefs

Positions of positive terms are A331386.
Primes of prime index are A006450.
Products of primes of prime index are A076610.
The number of nonprime prime indices is A330944.

Programs

  • Maple
    with(numtheory): a := proc (n) local B, ct, s: B := proc (n) local nn, j, m: nn := op(2, ifactors(n)): for j to nops(nn) do m[j] := op(j, nn) end do: [seq(seq(pi(op(1, m[i])), q = 1 .. op(2, m[i])), i = 1 .. nops(nn))] end proc: ct := 0: for s to nops(B(n)) do if isprime(B(n)[s]) = true then ct := ct+1 else end if end do: ct end proc: seq(a(n), n = 1 .. 130);
  • Mathematica
    B[n_] := Module[{nn, j, m}, nn = FactorInteger[n]; For[j = 1, j <= Length[nn], j++, m[j] = nn[[j]]]; Flatten[Table[Table[PrimePi[  m[i][[1]]], {q, 1, m[i][[2]]}], {i, 1, Length[nn]}]]];
    a[n_] := Module[{ct, s}, ct = 0; For[s = 1, s <= Length[B[n]], s++, If[ PrimeQ[B[n][[s]]], ct++]]; ct];
    Table[a[n], {n, 1, 130}] (* Jean-François Alcover, Apr 25 2017, translated from Maple *)
    Table[Total[Cases[FactorInteger[n],{p_,k_}/;PrimeQ[PrimePi[p]]:>k]],{n,30}] (* Gus Wiseman, Jan 17 2020 *)
  • PARI
    a(n) = my(f = factor(n)); sum(i=1, #f~, if(isprime(primepi(f[i, 1])), f[i, 2], 0)); \\ Amiram Eldar, Nov 03 2023

Formula

Additive with a(p^e) = e if primepi(p) is prime, and 0 otherwise. - Amiram Eldar, Nov 03 2023

A331915 Numbers with exactly one prime prime index, counted with multiplicity.

Original entry on oeis.org

3, 5, 6, 10, 11, 12, 17, 20, 21, 22, 24, 31, 34, 35, 39, 40, 41, 42, 44, 48, 57, 59, 62, 65, 67, 68, 69, 70, 77, 78, 80, 82, 83, 84, 87, 88, 95, 96, 109, 111, 114, 115, 118, 119, 124, 127, 129, 130, 134, 136, 138, 140, 141, 143, 145, 147, 154, 156, 157, 159
Offset: 1

Views

Author

Gus Wiseman, Feb 08 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
    3: {2}             57: {2,8}            114: {1,2,8}
    5: {3}             59: {17}             115: {3,9}
    6: {1,2}           62: {1,11}           118: {1,17}
   10: {1,3}           65: {3,6}            119: {4,7}
   11: {5}             67: {19}             124: {1,1,11}
   12: {1,1,2}         68: {1,1,7}          127: {31}
   17: {7}             69: {2,9}            129: {2,14}
   20: {1,1,3}         70: {1,3,4}          130: {1,3,6}
   21: {2,4}           77: {4,5}            134: {1,19}
   22: {1,5}           78: {1,2,6}          136: {1,1,1,7}
   24: {1,1,1,2}       80: {1,1,1,1,3}      138: {1,2,9}
   31: {11}            82: {1,13}           140: {1,1,3,4}
   34: {1,7}           83: {23}             141: {2,15}
   35: {3,4}           84: {1,1,2,4}        143: {5,6}
   39: {2,6}           87: {2,10}           145: {3,10}
   40: {1,1,1,3}       88: {1,1,1,5}        147: {2,4,4}
   41: {13}            95: {3,8}            154: {1,4,5}
   42: {1,2,4}         96: {1,1,1,1,1,2}    156: {1,1,2,6}
   44: {1,1,5}        109: {29}             157: {37}
   48: {1,1,1,1,2}    111: {2,12}           159: {2,16}
		

Crossrefs

These are numbers n such that A257994(n) = 1.
Prime-indexed primes are A006450, with products A076610.
The number of distinct prime prime indices is A279952.
Numbers with at least one prime prime index are A331386.
The set S of numbers with exactly one prime index in S are A331785.
The set S of numbers with exactly one distinct prime index in S are A331913.
Numbers with at most one prime prime index are A331914.
Numbers with exactly one distinct prime prime index are A331916.
Numbers with at most one distinct prime prime index are A331995.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Count[primeMS[#],_?PrimeQ]==1&]

A331914 Numbers with at most one prime prime index, counted with multiplicity.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 16, 17, 19, 20, 21, 22, 23, 24, 26, 28, 29, 31, 32, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 56, 57, 58, 59, 61, 62, 64, 65, 67, 68, 69, 70, 71, 73, 74, 76, 77, 78, 79, 80, 82, 83, 84, 86, 87
Offset: 1

Views

Author

Gus Wiseman, Feb 08 2020

Keywords

Comments

First differs from A324935 in having 39.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}           24: {1,1,1,2}      52: {1,1,6}
   2: {1}          26: {1,6}          53: {16}
   3: {2}          28: {1,1,4}        56: {1,1,1,4}
   4: {1,1}        29: {10}           57: {2,8}
   5: {3}          31: {11}           58: {1,10}
   6: {1,2}        32: {1,1,1,1,1}    59: {17}
   7: {4}          34: {1,7}          61: {18}
   8: {1,1,1}      35: {3,4}          62: {1,11}
  10: {1,3}        37: {12}           64: {1,1,1,1,1,1}
  11: {5}          38: {1,8}          65: {3,6}
  12: {1,1,2}      39: {2,6}          67: {19}
  13: {6}          40: {1,1,1,3}      68: {1,1,7}
  14: {1,4}        41: {13}           69: {2,9}
  16: {1,1,1,1}    42: {1,2,4}        70: {1,3,4}
  17: {7}          43: {14}           71: {20}
  19: {8}          44: {1,1,5}        73: {21}
  20: {1,1,3}      46: {1,9}          74: {1,12}
  21: {2,4}        47: {15}           76: {1,1,8}
  22: {1,5}        48: {1,1,1,1,2}    77: {4,5}
  23: {9}          49: {4,4}          78: {1,2,6}
		

Crossrefs

These are numbers n such that A257994(n) <= 1.
Prime-indexed primes are A006450, with products A076610.
The number of distinct prime prime indices is A279952.
Numbers with at least one prime prime index are A331386.
The set S of numbers with at most one prime index in S are A331784.
The set S of numbers with at most one distinct prime index in S are A331912.
Numbers with exactly one prime prime index are A331915.
Numbers with exactly one distinct prime prime index are A331916.
Numbers with at most one distinct prime prime index are A331995.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Count[primeMS[#],_?PrimeQ]<=1&]

A331916 Numbers with exactly one distinct prime prime index.

Original entry on oeis.org

3, 5, 6, 9, 10, 11, 12, 17, 18, 20, 21, 22, 24, 25, 27, 31, 34, 35, 36, 39, 40, 41, 42, 44, 48, 50, 54, 57, 59, 62, 63, 65, 67, 68, 69, 70, 72, 77, 78, 80, 81, 82, 83, 84, 87, 88, 95, 96, 100, 108, 109, 111, 114, 115, 117, 118, 119, 121, 124, 125, 126, 127
Offset: 1

Views

Author

Gus Wiseman, Feb 08 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
    3: {2}           40: {1,1,1,3}       81: {2,2,2,2}
    5: {3}           41: {13}            82: {1,13}
    6: {1,2}         42: {1,2,4}         83: {23}
    9: {2,2}         44: {1,1,5}         84: {1,1,2,4}
   10: {1,3}         48: {1,1,1,1,2}     87: {2,10}
   11: {5}           50: {1,3,3}         88: {1,1,1,5}
   12: {1,1,2}       54: {1,2,2,2}       95: {3,8}
   17: {7}           57: {2,8}           96: {1,1,1,1,1,2}
   18: {1,2,2}       59: {17}           100: {1,1,3,3}
   20: {1,1,3}       62: {1,11}         108: {1,1,2,2,2}
   21: {2,4}         63: {2,2,4}        109: {29}
   22: {1,5}         65: {3,6}          111: {2,12}
   24: {1,1,1,2}     67: {19}           114: {1,2,8}
   25: {3,3}         68: {1,1,7}        115: {3,9}
   27: {2,2,2}       69: {2,9}          117: {2,2,6}
   31: {11}          70: {1,3,4}        118: {1,17}
   34: {1,7}         72: {1,1,1,2,2}    119: {4,7}
   35: {3,4}         77: {4,5}          121: {5,5}
   36: {1,1,2,2}     78: {1,2,6}        124: {1,1,11}
   39: {2,6}         80: {1,1,1,1,3}    125: {3,3,3}
		

Crossrefs

These are numbers n such that A279952(n) = 1.
Prime-indexed primes are A006450, with products A076610.
The number of prime prime indices is A257994.
Numbers with at least one prime prime index are A331386.
The set S of numbers with exactly one prime index in S are A331785.
The set S of numbers with exactly one distinct prime index in S are A331913.
Numbers with at most one prime prime index are A331914.
Numbers with at most one distinct prime prime index are A331995.

Programs

  • Mathematica
    Select[Range[100],Count[PrimePi/@First/@FactorInteger[#],_?PrimeQ]==1&]

A329554 Smallest MM-number of a set of n nonempty sets with no singletons.

Original entry on oeis.org

1, 13, 377, 16211, 761917, 55619941, 4393975339, 443791509239, 50148440544007, 6870336354528959, 954976753279525301, 142291536238649269849, 23193520406899830985387, 3873317907952271774559629, 701070541339361191195292849, 139513037726532877047863276951
Offset: 0

Views

Author

Gus Wiseman, Nov 17 2019

Keywords

Comments

A multiset multisystem is a finite multiset of finite multisets. A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The multiset multisystem with MM-number n is formed by taking the multiset of prime indices of each part of the multiset of prime indices of n. For example, the prime indices of 78 are {1,2,6}, so the multiset multisystem with MM-number 78 is {{},{1},{1,2}}.

Examples

			The sequence of terms together with their corresponding systems begins:
       1: {}
      13: {{1,2}}
     377: {{1,2},{1,3}}
   16211: {{1,2},{1,3},{1,4}}
  761917: {{1,2},{1,3},{1,4},{2,3}}
		

Crossrefs

The smallest BII-number of a set of n sets is A000225(n).
BII-numbers of set-systems with no singletons are A326781.
MM-numbers of sets of nonempty sets are the odd terms of A302494.
MM-numbers of multisets of nonempty non-singleton sets are A320629.
The version with empty edges is A329556.
The version with singletons is A329557.
The version with empty edges and singletons is A329558.
Classes of MM-numbers: A305078 (connected), A316476 (antichains), A318991 (chains), A320456 (covers), A329559 (clutters).

Programs

  • Mathematica
    sqvs=Select[Range[2,30],SquareFreeQ[#]&&!PrimeQ[#]&];
    Table[Times@@Prime/@Take[sqvs,k],{k,0,Length[sqvs]}]

Formula

a(n) = Product_{i = 1..n} prime(A120944(i)).

A331995 Numbers with at most one distinct prime prime index.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 52, 53, 54, 56, 57, 58, 59, 61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 74, 76
Offset: 1

Views

Author

Gus Wiseman, Feb 08 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}           22: {1,5}          44: {1,1,5}
   2: {1}          23: {9}            46: {1,9}
   3: {2}          24: {1,1,1,2}      47: {15}
   4: {1,1}        25: {3,3}          48: {1,1,1,1,2}
   5: {3}          26: {1,6}          49: {4,4}
   6: {1,2}        27: {2,2,2}        50: {1,3,3}
   7: {4}          28: {1,1,4}        52: {1,1,6}
   8: {1,1,1}      29: {10}           53: {16}
   9: {2,2}        31: {11}           54: {1,2,2,2}
  10: {1,3}        32: {1,1,1,1,1}    56: {1,1,1,4}
  11: {5}          34: {1,7}          57: {2,8}
  12: {1,1,2}      35: {3,4}          58: {1,10}
  13: {6}          36: {1,1,2,2}      59: {17}
  14: {1,4}        37: {12}           61: {18}
  16: {1,1,1,1}    38: {1,8}          62: {1,11}
  17: {7}          39: {2,6}          63: {2,2,4}
  18: {1,2,2}      40: {1,1,1,3}      64: {1,1,1,1,1,1}
  19: {8}          41: {13}           65: {3,6}
  20: {1,1,3}      42: {1,2,4}        67: {19}
  21: {2,4}        43: {14}           68: {1,1,7}
		

Crossrefs

These are numbers n such that A279952(n) <= 1.
Prime-indexed primes are A006450, with products A076610.
Numbers whose prime indices are not all prime are A330945.
Numbers with at least one prime prime index are A331386.
The set S of numbers with at most one prime index in S are A331784.
The set S of numbers with at most one distinct prime index in S are A331912.
Numbers with at most one prime prime index are A331914.
Numbers with exactly one prime prime index are A331915.
Numbers with exactly one distinct prime prime index are A331916.

Programs

  • Mathematica
    Select[Range[100],Count[PrimePi/@First/@FactorInteger[#],_?PrimeQ]<=1&]
Showing 1-6 of 6 results.