cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A280003 Numbers k such that 7*2^k + 1 is a prime factor of a Fermat number 2^(2^m) + 1 for some m.

Original entry on oeis.org

14, 120, 290, 320, 95330, 2167800
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 21 2017

Keywords

Comments

18233956 belongs to this sequence, but its position is currently unknown. - Jeppe Stig Nielsen, Oct 05 2020

Crossrefs

Programs

  • Magma
    IsInteger := func; [n: n in [1..320] | IsPrime(k) and IsInteger(Log(2, Modorder(2, k))) where k is 7*2^n+1];

A342974 Primes p such that the order of 2 modulo p is not divisible by the largest odd divisor of p - 1.

Original entry on oeis.org

31, 43, 109, 127, 151, 157, 223, 229, 241, 251, 277, 283, 307, 331, 397, 431, 433, 439, 457, 499, 571, 601, 631, 641, 643, 673, 683, 691, 727, 733, 739, 811, 911, 919, 953, 971, 997, 1013, 1021, 1051, 1069, 1093, 1103, 1163, 1181, 1321, 1327, 1399, 1423, 1429
Offset: 1

Views

Author

Arkadiusz Wesolowski, Apr 01 2021

Keywords

Comments

Every prime factor of a composite Fermat number belongs to this sequence.
If a prime of the form 3*2^k + 1 belongs to this sequence, then k is in A204620 (see Golomb).
Primes p such that A014664(primepi(p)) is not divisible by A057023(primepi(p)). - Michel Marcus, Apr 26 2021

Crossrefs

Programs

  • Mathematica
    Select[Prime@Range@300,Mod[MultiplicativeOrder[2,#],Max@Select[Divisors[#-1],OddQ]]!=0&] (* Giorgos Kalogeropoulos, Apr 02 2021 *)
  • PARI
    forprime(p=3, 1429, if(Mod(znorder(Mod(2, p)), (p-1)>>valuation(p-1, 2)), print1(p, ", ")));
Showing 1-2 of 2 results.