cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280077 Partial sums of A007429 (Sum_{d|n} sigma(d)).

Original entry on oeis.org

1, 5, 10, 21, 28, 48, 57, 83, 101, 129, 142, 197, 212, 248, 283, 340, 359, 431, 452, 529, 574, 626, 651, 781, 819, 879, 937, 1036, 1067, 1207, 1240, 1360, 1425, 1501, 1564, 1762, 1801, 1885, 1960, 2142, 2185, 2365, 2410, 2553, 2679, 2779, 2828, 3113, 3179
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2016

Keywords

Comments

sigma(n) is the sum of the divisors of n (A000203).

Crossrefs

Cf. A000203, A237349 (partial sums of A211776), A280078 (partial products of A007429).

Programs

  • Magma
    [&+[&+[SumOfDivisors(d): d in Divisors(k)]: k in [1..n]]: n in [1..100]]
    
  • PARI
    a(n) = sum(k=1, n, sumdiv(k, d, sigma(d))); \\ Michel Marcus, May 29 2018
    
  • PARI
    my(N=50, x='x+O('x^N)); Vec(sum(k=1, N, sigma(k)*x^k/(1-x^k))/(1-x)) \\ Seiichi Manyama, Jul 24 2022

Formula

a(n) = Sum_{i=1..n} A007429(i).
a(n) = Sum_{k=1..n} A000203(k) * floor(n/k). - Daniel Suteu, May 28 2018
a(n) = Sum_{k=1..n} A000005(k)/2 * floor(n/k) * floor(1+n/k). - Daniel Suteu, May 28 2018
a(n) ~ Pi^4 * n^2 / 72. - Vaclav Kotesovec, Nov 06 2018
G.f.: (1/(1-x)) * Sum_{k>=1} sigma(k) * x^k/(1 - x^k). - Seiichi Manyama, Jul 24 2022