cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A280087 Numbers n such that Product_{d|n} sigma(d) = Product_{d|n+1} sigma(d).

Original entry on oeis.org

14, 1334, 1634, 2685, 33998, 42818, 84134, 122073, 166934, 289454, 383594, 440013, 544334, 605985, 649154, 655005, 1642154, 2284814, 2913105, 3571905, 3682622, 5181045, 6771405, 10074477, 10195305, 12825266, 15751533, 17714486, 17727554, 19886385, 25096665, 33422277, 34577834, 34883654
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2016

Keywords

Comments

sigma(n) is the sum of the divisors of n (A000203).
Numbers n such that A206032(n) = A206032(n+1).

Examples

			14 is a term because Product_{d|14} sigma(d) = 1 * 3 * 8 * 24 = Product_{d|15} sigma(d) = 1 * 4 * 6 * 24 = 576.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..1000] | &*[SumOfDivisors(d): d in Divisors(n)]  eq &*[SumOfDivisors(d): d in Divisors(n+1)]]
    
  • Mathematica
    Select[Range[5000], Times @@ DivisorSigma[1, Divisors[#]] == Times @@ DivisorSigma[1, Divisors[# + 1]] &] (* G. C. Greubel, Dec 26 2016 *)
  • PARI
    isok(n) = my(d = divisors(n), dd = divisors(n+1)); prod(k=1, #d, sigma(d[k])) == prod(k=1, #dd, sigma(dd[k])); \\ Michel Marcus, Dec 26 2016

Extensions

More terms from Michel Marcus, Dec 26 2016