A280104 a(n) = smallest prime factor of n-th Lucas number A000032(n), or 1 if there are none.
2, 1, 3, 2, 7, 11, 2, 29, 47, 2, 3, 199, 2, 521, 3, 2, 2207, 3571, 2, 9349, 7, 2, 3, 139, 2, 11, 3, 2, 7, 59, 2, 3010349, 1087, 2, 3, 11, 2, 54018521, 3, 2, 47, 370248451, 2, 6709, 7, 2, 3, 6643838879, 2, 29, 3, 2, 7, 119218851371, 2, 11, 47, 2, 3, 709, 2
Offset: 0
Keywords
Links
Crossrefs
Programs
-
Magma
[2,1] cat [Minimum(PrimeDivisors(Lucas(n))): n in [2..60]];
-
Maple
lucas:= n -> combinat:-fibonacci(n+1)+combinat:-fibonacci(n-1): spf:= proc(n) local F; F:= remove(hastype,ifactors(n,easy)[2],symbol); if F <> [] then return min(seq(f[1],f=F)) fi; min(numtheory:-factorsec(n)) end proc: spf(1):= 1: map(spf @ lucas, [$0..200]); # Robert Israel, Jan 05 2017
-
Mathematica
f[n_]:=(FactorInteger@LucasL@n)[[1, 1]]; Array[f, 60, 0]
-
PARI
a000032(n) = fibonacci(n+1)+fibonacci(n-1) a(n) = if(a000032(n-1)==1, 1, factor(a000032(n-1))[1, 1]) \\ Felix Fröhlich, Dec 26 2016
Formula
Extensions
Offset changed from Bruno Berselli, Dec 27 2016
Comments