cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A280302 Smallest k such that (n+1)^k - n^k is divisible by a square > 1.

Original entry on oeis.org

6, 10, 4, 2, 21, 20, 3, 20, 33, 6, 20, 2, 2, 5, 21, 6, 10, 6, 6, 4, 4, 2, 7, 2, 6, 3, 10, 4, 18, 6, 2, 10, 20, 6, 57, 17, 2, 14, 42, 2, 10, 10, 6, 39, 14, 4, 10, 20, 2, 21, 20, 6, 4, 21, 6, 20, 10, 2, 5, 2, 5, 2, 20, 6, 42, 14, 2, 6, 55, 6, 3, 7, 2, 42, 3, 2
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 31 2016

Keywords

Comments

a(209) > 70.
a(n) <= p^2 - p, where p = A053670(n). - Jinyuan Wang, May 15 2020

Examples

			a(1) = 6 is because (1+1)^6 - 1^6 = 63 is divisible by 9 = 3^2.
		

Crossrefs

Programs

  • PARI
    a(n) = {my(k = 1); while (issquarefree((n+1)^k - n^k), k++); k;} \\ Michel Marcus, Jan 14 2017

Extensions

More terms from Lars Blomberg, Jan 10 2017

A280208 Numbers m such that 4^m - 3^m is not squarefree, but 4^d - 3^d is squarefree for every proper divisor d of m.

Original entry on oeis.org

4, 14, 55, 78, 111, 253, 342, 355
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 28 2016

Keywords

Comments

Where numbers m such that 4^m - 3^m is not squarefree: numbers of the form i*a(j) for i >= 1.
The smallest squares of 4^m - 3^m as defined above are 25, 49, 121, 169, 1369, 529, 361, 5041. - Robert Price, Mar 07 2017
431 <= a(9) <= 1081. 1081, 3403 are terms. - Chai Wah Wu, Jul 20 2020

Examples

			4 is in this sequence because all 4^1 - 3^1 = 1, 4^2 - 3^2 = 7 are squarefrees where 1, 2 are proper divisors of 4 and 4^4 - 3^4 = 175 = 7*5^2 is not squarefree;
14 is in this sequence because all 4^1 = 3^2 = 1, 4^2 - 3^2 = 7, 4^7 - 3^7 = 14197 are squarefrees where 1, 2, 7 are proper divisors of 14 and 4^14 - 3^14 = 263652487 = 7^2*3591*14197 is not squarefree.
		

Crossrefs

Cf. A005061.
Cf. Numbers m such that (k+1)^m - k^m is not squarefree, but (k+1)^d - k^d is squarefree for every proper divisor d of m: A237043 (k = 1), A280203 (k = 2), this sequence (k = 3), A280209 (k = 4), A280307 (k = 6).

Programs

  • Mathematica
    Function[s, DeleteCases[#, 0] &@ MapIndexed[#1 Boole[! AnyTrue[Take[s, First@ #2 - 1], Function[k, Divisible[#1, k]]]] &, s]]@ Select[Range@ 80, ! SquareFreeQ[4^# - 3^#] &] (* Michael De Vlieger, Dec 30 2016 *)

Extensions

a(6)-a(8) from Jinyuan Wang, May 15 2020

A280209 Numbers m such that 5^m - 4^m is not squarefree, but 5^d - 4^d is squarefree for every proper divisor d of m.

Original entry on oeis.org

2, 55, 171, 183, 203
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 28 2016

Keywords

Comments

Where numbers m such that 5^m - 4^m is not squarefree: numbers of the form i*a(j) for i >= 1.
Numbers m such that (k+1)^m - k^m is not squarefree, but (k+1)^d - k^d is squarefree for every proper divisor d of m:
A237043 (k = 1): 6, 20, 21, 110, 136, 155, 253, 364, 602, 657, 812, 889, 979, 1081, ... a(15) >= 1207 - Max Alekseyev, Sep 28 2015;
A280203 (k = 2): 10, 11, 42, 52, 57, 203, 272, 497, ... a(9) > 497 - Charles R Greathouse IV, Dec 27 2016;
A280208 (k = 3): 4, 14, 55, 78, 111, 253, 342, 355, ... a(9) >= 431;
this sequence (k = 4): 2, 55, 171, 183, 203, ... a(6) >= 367;
A... (k = 5): 21, 22, 39, 136, 186, 203, 244, 333, ... a(9) >= 337;
A280307 (k = 6): 20, 26, 55, 68, 171, 258, 310, ... a(8) >= 323;
A... (k = 7): 3, 10, 55, 272, ... a(5) >= 289;
A... (k = 8): 20, 21, 22, 34, 93, 116, 138, 156, 166, 205, 253, ... a(12) >= 277;
A... (k = 9): 33, 38, 42, 78, 110, 155, ... a(7) >= 263;
A... (k = 10): 6, 14, 52, 68, 253, ... a(6) >= 263;
A... (k = 11): 20, 42, 46, 53, 114, 136, 156, 205, ... a(9) >= 251.
The smallest square of 5^m - 4^m as defined above are 9, 121, 361, 3721, 841. - Robert Price, Mar 07 2017
a(6) <= 465. 465, 955, 1027 are terms. - Chai Wah Wu, Jul 20 2020

Examples

			2 is in this sequence because 5^1 - 4^1 = 1 is squarefree where 1 is proper divisor of 2 and 5^2 - 4^2 = 9 = 3^2 is not squarefree.
		

Crossrefs

Extensions

a(3)-a(5) from Jinyuan Wang, May 15 2020
Showing 1-3 of 3 results.