A280560 a(n) = (-1)^n * 2 if n!=0, with a(0) = 1.
1, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2, -2, 2
Offset: 0
Examples
G.f. = 1 - 2*x + 2*x^2 - 2*x^3 + 2*x^4 - 2*x^5 + 2*x^6 - 2*x^7 + 2*x^8 - 2*x^9 + ...
Links
- Index entries for linear recurrences with constant coefficients, signature (-1).
Programs
-
Magma
[n eq 0 select 1 else 2*(-1)^n: n in [0..75]]; // G. C. Greubel, Jul 29 2018; Mar 28 2024
-
Mathematica
a[ n_] := (-1)^n (2 - Boole[n == 0]); PadRight[{1},120,{2,-2}] (* Harvey P. Dale, Jun 04 2019 *)
-
PARI
{a(n) = (-1)^n * if(n, 2, 1)};
-
SageMath
[2*(-1)^n -int(n==0) for n in range(76)] # G. C. Greubel, Mar 28 2024
Formula
Euler transform of length 2 sequence [-2, 1].
Moebius transform is length 2 sequence [-2, 4].
a(n) = -2*A033999(n) if n!=0.
G.f.: (1 - x) / (1 + x) = 1 / (1 + 2*x / (1 - x)) = 1 - 2*x / (1 + x).
E.g.f.: 2*exp(-x) - 1.
a(n) = a(-n) for all n in Z.
a(n) = (-1)^n * A040000(n).
a(2*n) = A040000(n).
Convolution inverse is A040000.