cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A280780 Numerators of coefficients in asymptotic expansion of S_n (number of simple permutations, A111111).

Original entry on oeis.org

1, -4, 2, -40, -182, -7624, -202652, -14115088, -30800534, -16435427656, -1051314228316, -22675483971248, -6980651581556876, -283099764343781072, -163910651754113166328, -43009695328217994139936, -793529010007812171331166, -20144221762701827321778088, -274475989492312981198559876
Offset: 0

Views

Author

N. J. A. Sloane, Jan 19 2017

Keywords

Examples

			Coefficients are 1, -4, 2, -40/3, -182/3, -7624/15, -202652/45, -14115088/315, -30800534/63, -16435427656/2835, ...
		

Crossrefs

Programs

  • PARI
    seq(N) = {
      my(f = serreverse(x*Ser(vector(N, n, n!))));
      Vec(x* f'/f * exp(2 + (f-x)/(x*f)));
    };
    apply(numerator, seq(20))  \\ Gheorghe Coserea, Jan 22 2017

Formula

A111111(n) ~ n!*exp(-2)*(1 - 4/n + 2/(n*(n-1)) - (40/3)/(n*(n-1)*(n-2)) - ...). - Gheorghe Coserea, Jan 23 2017

Extensions

More terms from Gheorghe Coserea, Jan 22 2017

A280781 Denominators of coefficients in asymptotic expansion of S_n (number of simple permutations, A111111).

Original entry on oeis.org

1, 1, 1, 3, 3, 15, 45, 315, 63, 2835, 14175, 22275, 467775, 1216215, 42567525, 638512875, 638512875, 834978375, 558242685, 1856156927625, 713906510625, 17717861581875, 2143861251406875, 9861761756471625, 147926426347074375, 75472666503609375, 48076088562799171875
Offset: 0

Views

Author

N. J. A. Sloane, Jan 19 2017

Keywords

Comments

Has the same start as A046983 but is a different sequence.

Examples

			Coefficients are 1, -4, 2, -40/3, -182/3, -7624/15, -202652/45, -14115088/315, -30800534/63, -16435427656/2835, ...
		

Crossrefs

Programs

  • PARI
    seq(N) = {
      my(f = serreverse(x*Ser(vector(N, n, n!))));
      Vec(x* f'/f * exp(2 + (f-x)/(x*f)));
    };
    apply(denominator, seq(28))  \\ Gheorghe Coserea, Jan 22 2017

Extensions

More terms from Gheorghe Coserea, Jan 22 2017

A280778 Numerators of coefficients in asymptotic expansion of M_n (number of monolithic chord diagrams, A280775).

Original entry on oeis.org

1, -4, -6, -154, -1610, -34588, -4666292, -553625626, -1158735422, -388434091184, -31268175015478, -2796356409576766, -4624948938397276052, -1691272281281652408568, -2154089954877183990112, -170222948041126582837968646, -5761785676811885455064909606, -55629298859254851627617870836
Offset: 0

Views

Author

N. J. A. Sloane, Jan 19 2017

Keywords

Examples

			Coefficients are 1, -4, -6, -154/3, -1610/3, -34588/5, -4666292/45, -553625626/315, -1158735422/35, ...
		

Crossrefs

Programs

  • PARI
    A000699_seq(N) = {
      my(a = vector(N)); a[1] = 1;
      for (n=2, N, a[n] = sum(k=1, n-1, (2*k-1)*a[k]*a[n-k])); a;
    };
    seq(N) = {
      my(M = subst(x*Ser(A000699_seq(N)), x, x/(1-x)^2));
      Vec(x/(1-x)*exp(1-x/2-(1-x)^2/(2*x)*(2*M + M^2))/M);
    };
    apply(numerator, seq(18))  \\ Gheorghe Coserea, Jan 22 2017

Extensions

More terms from Gheorghe Coserea, Jan 22 2017

A280779 Denominators of coefficients in asymptotic expansion of M_n (number of monolithic chord diagrams, A280775).

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 45, 315, 35, 567, 2025, 7425, 467775, 6081075, 257985, 638512875, 638512875, 172297125, 13956067125, 74246277105, 3093594879375, 14992036723125, 2143861251406875, 16436269594119375, 4226469324202125, 48028060502296875, 593531957565421875, 56437147443285984375
Offset: 0

Views

Author

N. J. A. Sloane, Jan 19 2017

Keywords

Comments

This has the same start as two other sequences, A241591 and A248592, but appears to be different from both.

Examples

			Coefficients are 1, -4,-6, -154/3, -1610/3, -34588/5, -4666292/45, -553625626/315, -1158735422/35, ...
		

Crossrefs

Programs

  • PARI
    A000699_seq(N) = {
      my(a = vector(N)); a[1] = 1;
      for (n=2, N, a[n] = sum(k=1, n-1, (2*k-1)*a[k]*a[n-k])); a;
    };
    seq(N) = {
      my(M = subst(x*Ser(A000699_seq(N)), x, x/(1-x)^2));
      Vec(x/(1-x)*exp(1-x/2-(1-x)^2/(2*x)*(2*M + M^2))/M);
    };
    apply(numerator, seq(18))  \\ Gheorghe Coserea, Jan 22 2017

A280776 Numerators of coefficients in asymptotic expansion of C_n (number of connected chord diagrams, A000699).

Original entry on oeis.org

1, -5, -43, -579, -44477, -5326191, -180306541, -203331297947, -58726239094693, -781618285277957, -1025587838964854273, -35763822710356866613, -330773478104531041960421, -237504847171108896327033959, -196526060612842999084524774697, -20633624138373135772483762873819
Offset: 0

Views

Author

N. J. A. Sloane, Jan 19 2017

Keywords

Examples

			Coefficients are 1, -5/2, -43/8, -579/16, -44477/128, -5326191/1280, -180306541/3072, ...
		

Crossrefs

Programs

  • PARI
    A000699_seq(N) = {
      my(a = vector(N)); a[1] = 1;
      for (n=2, N, a[n] = sum(k=1, n-1, (2*k-1)*a[k]*a[n-k])); a;
    };
    seq(N) = my(C = 'x*Ser(A000699_seq(N))); Vec(x*exp(1-(2*C+C^2)/(2*x))/C);
    apply(numerator, seq(16))  \\ Gheorghe Coserea, Jan 22 2017

Extensions

More terms from Gheorghe Coserea, Jan 22 2017
Showing 1-5 of 5 results.