cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A111111 Number of simple permutations of degree n.

Original entry on oeis.org

1, 2, 0, 2, 6, 46, 338, 2926, 28146, 298526, 3454434, 43286526, 583835650, 8433987582, 129941213186, 2127349165822, 36889047574274, 675548628690430, 13030733384956418, 264111424634864638, 5612437196153963522, 124789500579376435198, 2897684052921851965442
Offset: 1

Views

Author

N. J. A. Sloane, Oct 14 2005

Keywords

Comments

A permutation is simple if the only intervals that are mapped onto intervals are the singletons and [1..n].
For example, the permutation
1234567
2647513
is not simple since it maps [2..5] onto [4..7].
In other words, a permutation [1 ... n] -> [p_1 p_2 ... p_n] is simple if there is no string of consecutive numbers [i_1 ... i_k] which is mapped onto a string of consecutive numbers [p_i_1 ... p_i_k] except for the strings of length k = 1 or n.

Examples

			G.f. = x + 2*x^2 + 2*x^4 + 6*x^5 + 46*x^6 + 338*x^7 + 2926*x^8 + ...
The simple permutations of lowest degree are 1, 12, 21, 2413, 3142.
		

References

  • Corteel, Sylvie; Louchard, Guy; and Pemantle, Robin, Common intervals of permutations. in Mathematics and Computer Science. III, 3--14, Trends Math., Birkhuser, Basel, 2004.
  • S. Kitaev, Patterns in Permutations and Words, Springer-Verlag, 2011. see p. 399 Table A.7
  • Bridget Eileen Tenner, Interval posets of permutations, arXiv:2007.06142, Aug 2021.

Crossrefs

Programs

  • Mathematica
    nmax = 20; t[n_, k_] := t[n, k] = Sum[(m + 1)!*t[n - m - 1, k - 1], {m, 0, n - k}]; t[n_, 1] = n!; t[n_, n_] = 1; tnk = Table[t[n, k], {n, 1, nmax}, {k, 1, nmax}]; A111111 = -Inverse[tnk][[All, 1]] + 2*(-1)^Range[0, nmax - 1]; A111111[[2]] = 2;
    A111111 (* Jean-François Alcover, Jul 13 2016 *)
  • PARI
    simple(v)=for(i=1,#v-1, for(j=i+1,#v, my(u=vecsort(v[i..j]));if(u[#u]-u[1]==#u-1 && #u<#v, return(0)))); 1
    a(n)=sum(i=0,n!-1, simple(numtoperm(n,i))) \\ Charles R Greathouse IV, Nov 05 2013
    seq(N) = Vec(2 + 2*x^2 - 2/(1+x) - serreverse(x*Ser(vector(N, n, n!))));  \\ Gheorghe Coserea, Jan 22 2017

Formula

a(n) = -A059372(n)+2(-1)^(n+1).
a(n) ~ n!*(1-4/n)/e^2. - Jon E. Schoenfield, Aug 05 2006
a(n) ~ n!*exp(-2)*(1 - 4/n + 2/(n*(n-1)) - (40/3)/(n*(n-1)*(n-2)) - ...). Coefficients are given by A280780(n)/A280781(n).- Gheorghe Coserea, Jan 23 2017

Extensions

Incorrect statement removed by Jay Pantone, Jul 16 2014
Word "fixed" removed by Franklin T. Adams-Watters, Jul 22 2014

A280780 Numerators of coefficients in asymptotic expansion of S_n (number of simple permutations, A111111).

Original entry on oeis.org

1, -4, 2, -40, -182, -7624, -202652, -14115088, -30800534, -16435427656, -1051314228316, -22675483971248, -6980651581556876, -283099764343781072, -163910651754113166328, -43009695328217994139936, -793529010007812171331166, -20144221762701827321778088, -274475989492312981198559876
Offset: 0

Views

Author

N. J. A. Sloane, Jan 19 2017

Keywords

Examples

			Coefficients are 1, -4, 2, -40/3, -182/3, -7624/15, -202652/45, -14115088/315, -30800534/63, -16435427656/2835, ...
		

Crossrefs

Programs

  • PARI
    seq(N) = {
      my(f = serreverse(x*Ser(vector(N, n, n!))));
      Vec(x* f'/f * exp(2 + (f-x)/(x*f)));
    };
    apply(numerator, seq(20))  \\ Gheorghe Coserea, Jan 22 2017

Formula

A111111(n) ~ n!*exp(-2)*(1 - 4/n + 2/(n*(n-1)) - (40/3)/(n*(n-1)*(n-2)) - ...). - Gheorghe Coserea, Jan 23 2017

Extensions

More terms from Gheorghe Coserea, Jan 22 2017

A280777 Denominators of coefficients in asymptotic expansion of C_n (number of connected chord diagrams, A000699).

Original entry on oeis.org

1, 2, 8, 16, 128, 1280, 3072, 215040, 3440640, 2293760, 137625600, 201850880, 72666316800, 1889324236800, 52901078630400, 176336928768000, 135426761293824, 191854578499584000, 1593868805996544000, 787371190162292736000, 31494847606491709440000, 29395191099392262144000
Offset: 0

Views

Author

N. J. A. Sloane, Jan 19 2017

Keywords

Examples

			Coefficients are 1, -5/2, -43/8, -579/16, -44477/128, -5326191/1280, -180306541/3072, ...
		

Crossrefs

Programs

  • PARI
    A000699_seq(N) = {
      my(a = vector(N)); a[1] = 1;
      for (n=2, N, a[n] = sum(k=1, n-1, (2*k-1)*a[k]*a[n-k])); a;
    };
    seq(N) = my(C = 'x*Ser(A000699_seq(N))); Vec(x*exp(1-(2*C+C^2)/(2*x))/C);
    apply(denominator, seq(22)) \\ Gheorghe Coserea, Jan 22 2017

Extensions

More terms from Gheorghe Coserea, Jan 22 2017

A280778 Numerators of coefficients in asymptotic expansion of M_n (number of monolithic chord diagrams, A280775).

Original entry on oeis.org

1, -4, -6, -154, -1610, -34588, -4666292, -553625626, -1158735422, -388434091184, -31268175015478, -2796356409576766, -4624948938397276052, -1691272281281652408568, -2154089954877183990112, -170222948041126582837968646, -5761785676811885455064909606, -55629298859254851627617870836
Offset: 0

Views

Author

N. J. A. Sloane, Jan 19 2017

Keywords

Examples

			Coefficients are 1, -4, -6, -154/3, -1610/3, -34588/5, -4666292/45, -553625626/315, -1158735422/35, ...
		

Crossrefs

Programs

  • PARI
    A000699_seq(N) = {
      my(a = vector(N)); a[1] = 1;
      for (n=2, N, a[n] = sum(k=1, n-1, (2*k-1)*a[k]*a[n-k])); a;
    };
    seq(N) = {
      my(M = subst(x*Ser(A000699_seq(N)), x, x/(1-x)^2));
      Vec(x/(1-x)*exp(1-x/2-(1-x)^2/(2*x)*(2*M + M^2))/M);
    };
    apply(numerator, seq(18))  \\ Gheorghe Coserea, Jan 22 2017

Extensions

More terms from Gheorghe Coserea, Jan 22 2017

A280779 Denominators of coefficients in asymptotic expansion of M_n (number of monolithic chord diagrams, A280775).

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 45, 315, 35, 567, 2025, 7425, 467775, 6081075, 257985, 638512875, 638512875, 172297125, 13956067125, 74246277105, 3093594879375, 14992036723125, 2143861251406875, 16436269594119375, 4226469324202125, 48028060502296875, 593531957565421875, 56437147443285984375
Offset: 0

Views

Author

N. J. A. Sloane, Jan 19 2017

Keywords

Comments

This has the same start as two other sequences, A241591 and A248592, but appears to be different from both.

Examples

			Coefficients are 1, -4,-6, -154/3, -1610/3, -34588/5, -4666292/45, -553625626/315, -1158735422/35, ...
		

Crossrefs

Programs

  • PARI
    A000699_seq(N) = {
      my(a = vector(N)); a[1] = 1;
      for (n=2, N, a[n] = sum(k=1, n-1, (2*k-1)*a[k]*a[n-k])); a;
    };
    seq(N) = {
      my(M = subst(x*Ser(A000699_seq(N)), x, x/(1-x)^2));
      Vec(x/(1-x)*exp(1-x/2-(1-x)^2/(2*x)*(2*M + M^2))/M);
    };
    apply(numerator, seq(18))  \\ Gheorghe Coserea, Jan 22 2017

A280776 Numerators of coefficients in asymptotic expansion of C_n (number of connected chord diagrams, A000699).

Original entry on oeis.org

1, -5, -43, -579, -44477, -5326191, -180306541, -203331297947, -58726239094693, -781618285277957, -1025587838964854273, -35763822710356866613, -330773478104531041960421, -237504847171108896327033959, -196526060612842999084524774697, -20633624138373135772483762873819
Offset: 0

Views

Author

N. J. A. Sloane, Jan 19 2017

Keywords

Examples

			Coefficients are 1, -5/2, -43/8, -579/16, -44477/128, -5326191/1280, -180306541/3072, ...
		

Crossrefs

Programs

  • PARI
    A000699_seq(N) = {
      my(a = vector(N)); a[1] = 1;
      for (n=2, N, a[n] = sum(k=1, n-1, (2*k-1)*a[k]*a[n-k])); a;
    };
    seq(N) = my(C = 'x*Ser(A000699_seq(N))); Vec(x*exp(1-(2*C+C^2)/(2*x))/C);
    apply(numerator, seq(16))  \\ Gheorghe Coserea, Jan 22 2017

Extensions

More terms from Gheorghe Coserea, Jan 22 2017
Showing 1-6 of 6 results.