cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281232 Numbers k such that k+2 divides concat(k, k+1).

Original entry on oeis.org

1, 5, 65, 665, 6665, 66665, 666665, 2857141, 6666665, 66666665, 666666665, 1052631577, 6666666665, 66666666665, 666666666665, 2857142857141, 6666666666665, 11764705882351, 66666666666665, 666666666666665, 6666666666666665, 66666666666666665, 666666666666666665
Offset: 1

Views

Author

Paolo P. Lava, Jan 18 2017

Keywords

Comments

Numbers of the form 60*(10^j - 1)/9 + 5, for j >= 0, belong to the sequence.
The ratios are: 4, 8, 98, 998, 9998, 99998, 999998, 9999994, 9999998, 99999998, 999999998, 9999999982, 9999999998, ...
Numbers of the form t(j) = 20*(10^(6*j) - 1)/7 + 1, for j >= 0, belong to the sequence, because (10^(6*j+1)*t(j) + t(j) + 1)/(t(j) + 2) = 10^(6*j+1) - 6. - Bruno Berselli, Oct 09 2018

Examples

			concat(2857141, 2857142) / 2857143 = 28571412857142 / 2857143 = 9999994.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local c,n;
    for n from 1 to q do c:=n*10^(ilog10(n+1)+1)+n+1;
    if type(c/(n+2),integer) then print(n); fi; od; end: P(10^9);
  • Mathematica
    Select[Range[10^7], Divisible[FromDigits@ Flatten@ Map[IntegerDigits, {#, # + 1}], # + 2] &] (* Michael De Vlieger, Jan 19 2017 *)
  • PARI
    isok(n) = !(eval(Str(n, n+1)) % (n+2)); \\ Michel Marcus, Oct 09 2018

Formula

a(n) = A088797(n) - 2. - Alois P. Heinz, Jan 19 2017

Extensions

More terms from Alois P. Heinz, Jan 19 2017