A281574 Number of geometric lattices on n nodes.
1, 1, 0, 1, 1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 3, 5, 3, 4, 5, 6, 6, 8, 9, 16, 16, 21, 29, 45, 50, 95, 136, 220, 392, 680, 1270, 2530, 4991
Offset: 1
Examples
From _Peter Luschny_, Jan 24 2017: (Start) The only two geometric lattices on 8 nodes: 7 / | \ / | \ _ _ 7_ _ 3 5 6 / / /\ \ \ |\/ \/| / / / \ \ \ |/\ /\| 1 2 3 4 5 6 1 2 4 \ \ \ / / / \ | / \_\_\/_/_/ \|/ 0 0 (End)
Links
- J. Kohonen, Generating modular lattices up to 30 elements, arXiv:1708.03750 [math.CO], 2017-2018.
- M. Malandro, The unlabeled lattices on <=15 nodes, (listing of lattices; geometric lattices are a subset of these).
- Wikipedia, Geometric lattice
Crossrefs
Cf. A229202 (semimodular lattices).
Extensions
a(16)-a(34) from Kohonen (2017), by Jukka Kohonen, Aug 15 2017
a(35)-a(37) by Jukka Kohonen, Jul 07 2020
Comments