A281618 Fibonacci numbers F such that all the prime factors of F^2 + 1 are also Fibonacci numbers.
1, 2, 3, 5, 8, 34, 144, 610, 1134903170
Offset: 1
Examples
a(9)^2+1 = Fibonacci(45)^2+1 = 1134903170^2+1 = 1288005205276048901 = 433494437 * 2971215073 = Fibonacci(43)*Fibonacci(47).
Programs
-
Maple
with(numtheory):with(combinat,fibonacci):nn:=100: for n from 1 to nn do: f:=fibonacci(n)^2+1:x:=factorset(f):n0:=nops(x):it:=0: for m from 1 to n0 do: c:=x[m]: x1:=sqrt(5*c^2-4):x2:=sqrt(5*c^2+4): if x1=floor(x1) or x2=floor(x2) then it:=it+1: else fi: od: if it=n0 then print(fibonacci(n)):else fi:od:
-
Mathematica
With[{s = Rest@ Fibonacci@ Range@ 120}, Select[s, Times @@ Boole@ Map[MemberQ[s, #] &, FactorInteger[#^2 + 1][[All, 1]]] > 0 &]] (* Michael De Vlieger, Jan 27 2017 *)
-
PARI
isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8)); isokf(n) = {my(f = factor(fibonacci(n)^2+1)); for (k=1, #f~, if (!isfib(f[k,1]), return(0));); return(1);} for (n=2, 50, if (isokf(n), print1(fibonacci(n), ", "))) \\ Michel Marcus, Jan 28 2017
Comments