cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A281618 Fibonacci numbers F such that all the prime factors of F^2 + 1 are also Fibonacci numbers.

Original entry on oeis.org

1, 2, 3, 5, 8, 34, 144, 610, 1134903170
Offset: 1

Views

Author

Michel Lagneau, Jan 25 2017

Keywords

Comments

The corresponding indices of F are 1 or 2, 3, 4, 5, 6, 9, 12, 15, 45, ... and A245236 is in this sequence.

Examples

			a(9)^2+1 = Fibonacci(45)^2+1 = 1134903170^2+1 = 1288005205276048901 = 433494437 * 2971215073 = Fibonacci(43)*Fibonacci(47).
		

Crossrefs

Programs

  • Maple
    with(numtheory):with(combinat,fibonacci):nn:=100:
    for n from 1 to nn do:
      f:=fibonacci(n)^2+1:x:=factorset(f):n0:=nops(x):it:=0:
        for m from 1 to n0 do:
        c:=x[m]:
        x1:=sqrt(5*c^2-4):x2:=sqrt(5*c^2+4):
        if x1=floor(x1) or x2=floor(x2)
         then
         it:=it+1:
         else
        fi:
    od:
    if it=n0 then print(fibonacci(n)):else fi:od:
  • Mathematica
    With[{s = Rest@ Fibonacci@ Range@ 120}, Select[s, Times @@ Boole@ Map[MemberQ[s, #] &, FactorInteger[#^2 + 1][[All, 1]]] > 0 &]] (* Michael De Vlieger, Jan 27 2017 *)
  • PARI
    isfib(n) = my(k=n^2); k+=(k+1)<<2; issquare(k) || (n>0 && issquare(k-8));
    isokf(n) = {my(f = factor(fibonacci(n)^2+1)); for (k=1, #f~, if (!isfib(f[k,1]), return(0));); return(1);}
    for (n=2, 50, if (isokf(n), print1(fibonacci(n), ", "))) \\ Michel Marcus, Jan 28 2017