A282550 Perfect powers that are the sum of two distinct proper prime powers (A246547).
25, 36, 81, 125, 144, 196, 324, 512, 576, 1089, 2304, 2744, 2916, 5041, 9216, 14884, 16641, 26244, 36864, 51984, 147456, 236196, 589824, 941192, 1196836, 2125764, 2359296, 9437184, 19131876, 37748736, 67125249, 150994944, 172186884, 322828856, 603979776
Offset: 1
Keywords
Examples
512 = 2^9 is a term because 2^9 = 7^3 + 13^2.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..45 (terms < 2*10^11)
Programs
-
Mathematica
Select[Union@ Map[Total, Subsets[With[{nn = 10^6}, Complement[ Select[ Range@ nn, PrimePowerQ], Prime[Range[PrimePi@ nn]]]], {2}]], # == 1 || GCD @@ FactorInteger[#][[All, 2]] > 1 &] (* Michael De Vlieger, Feb 18 2017, after Harvey P. Dale at A246547 *)
-
PARI
is(n) = if(!ispower(n), return(0), my(x=n-1, y=1); while(y < x, if(isprimepower(x) && isprimepower(y) && !ispseudoprime(x) && !ispseudoprime(y), return(1)); y++; x--)); 0 \\ Felix Fröhlich, Feb 18 2017
Extensions
More terms from Felix Fröhlich, Feb 18 2017
a(28)-a(35) from Giovanni Resta, May 07 2017
Comments