cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A386785 a(n) = n^4*sigma_5(n).

Original entry on oeis.org

0, 1, 528, 19764, 270592, 1953750, 10435392, 40356008, 138547200, 389021373, 1031580000, 2357962332, 5347980288, 10604527934, 21307972224, 38613915000, 70936231936, 118587960018, 205403284944, 322687828100, 528669120000, 797596142112, 1245004111296, 1801152941304, 2738246860800
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 02 2025

Keywords

Crossrefs

Programs

  • Magma
    [0] cat [n^4*DivisorSigma(5, n): n in [1..35]]; // Vincenzo Librandi, Aug 04 2025
  • Mathematica
    Table[n^4*DivisorSigma[5, n], {n, 0, 30}]
    (* or *)
    nmax = 30; CoefficientList[Series[Sum[k^4*x^k*(1 + 502*x^k + 14608*x^(2*k) + 88234*x^(3*k) + 156190*x^(4*k) + 88234*x^(5*k) + 14608*x^(6*k) + 502*x^(7*k) + x^(8*k))/(1 - x^k)^10, {k, 1, nmax}], {x, 0, nmax}], x]
    (* or *)
    terms = 30; E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}]; E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}]; E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}]; CoefficientList[Series[(4*E2[x]^3*E4[x]^2 + 2*E2[x]*E4[x]^3 - E2[x]^4*E6[x] - 6*E2[x]^2*E4[x]*E6[x] - E4[x]^2*E6[x] + 2*E2[x]*E6[x]^2)/3456, {x, 0, terms}], x]

Formula

G.f.: Sum_{k>=1} k^4*x^k*(1 + 502*x^k + 14608*x^(2*k) + 88234*x^(3*k) + 156190*x^(4*k) + 88234*x^(5*k) + 14608*x^(6*k) + 502*x^(7*k) + x^(8*k))/(1 - x^k)^10.
a(n) = (4*A386813(n) + 2*A282549(n) - A386814(n) - 6*A282792(n) - A058550(n) + 2*A282576(n))/3456.
a(n) = n^4*A001160(n).
Dirichlet g.f.: zeta(s-4)*zeta(s-9). - R. J. Mathar, Aug 03 2025

A386781 a(n) = n^3*sigma_7(n).

Original entry on oeis.org

0, 1, 1032, 59076, 1056832, 9765750, 60966432, 282475592, 1082196480, 3488379453, 10078254000, 25937425932, 62433407232, 137858494046, 291514810944, 576921447000, 1108169199616, 2015993905362, 3600007595496, 6131066264660, 10320757104000, 16687528072992, 26767423561824
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 02 2025

Keywords

Crossrefs

Programs

  • Magma
    [0] cat [n^3*DivisorSigma(7, n): n in [1..35]]; // Vincenzo Librandi, Aug 04 2025
  • Mathematica
    Table[n^3*DivisorSigma[7, n], {n, 0, 30}]
    (* or *)
    nmax = 30; CoefficientList[Series[Sum[k^10*x^k*(x^(2*k) + 4*x^k + 1)/(1 - x^k)^4, {k, 1, nmax}], {x, 0, nmax}], x]
    (* or *)
    terms = 30; E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}]; E4[x_] = 1 + 240*Sum[k^3*x^k/(1 - x^k), {k, 1, terms}]; E6[x_] = 1 - 504*Sum[k^5*x^k/(1 - x^k), {k, 1, terms}]; CoefficientList[Series[(3*E2[x]^3*E4[x]^2 + 5*E2[x]*E4[x]^3 - 9*E2[x]^2*E4[x]*E6[x] - 3*E4[x]^2*E6[x] + 4*E2[x]*E6[x]^2)/3456, {x, 0, terms}], x]

Formula

G.f.: Sum_{k>=1} k^10*x^k*(x^(2*k) + 4*x^k + 1)/(1 - x^k)^4.
a(n) = (3*A386813(n) + 5*A282549(n) - 9*A282792(n) - 3*A058550(n) + 4*A282576(n))/3456.
a(n) = n^3*A013955(n).
Dirichlet g.f.: zeta(s-3)*zeta(s-10). - R. J. Mathar, Aug 03 2025

A280021 Expansion of phi_{11, 2}(x) where phi_{r, s}(x) = Sum_{n, m>0} m^r * n^s * x^{m*n}.

Original entry on oeis.org

0, 1, 2052, 177156, 4202512, 48828150, 363524112, 1977326792, 8606744640, 31382654013, 100195363800, 285311670732, 744500215872, 1792160394206, 4057474577184, 8650199741400, 17626613022976, 34271896307922, 64397206034676, 116490258898580, 205200886312800
Offset: 0

Views

Author

Seiichi Manyama, Feb 22 2017

Keywords

Comments

Multiplicative because A013957 is. - Andrew Howroyd, Jul 23 2018

Crossrefs

Cf. A282097 (phi_{3, 2}), A282099 (phi_{5, 2}), A282751 (phi_{7, 2}), A282753 (phi_{9, 2}), this sequence (phi_{11, 2}).
Cf. A282549 (E_2*E_4^3), A282792 (E_2^2*E_4*E_6), A282576 (E_2*E_6^2), A058550 (E_4^2*E_6 = E_14).
Cf. A013957 (sigma_9(n)), A282254 (n*sigma_9(n)), this sequence (n^2*sigma_9(n)).
Cf. A013668 (zeta(10)).

Programs

  • Mathematica
    Table[If[n>0, n^2 * DivisorSigma[9, n], 0], {n, 0, 20}] (* Indranil Ghosh, Mar 12 2017 *)
  • PARI
    for(n=0, 20, print1(if(n==0, 0, n^2 * sigma(n, 9)),", ")) \\ Indranil Ghosh, Mar 12 2017

Formula

a(n) = n^2*A013957(n) for n > 0.
a(n) = (6*A282549(n) - 5*A282792(n) + 4*A282576(n) - 5*A058550(n))/1728.
Sum_{k=1..n} a(k) ~ zeta(10) * n^12 / 12. - Amiram Eldar, Sep 06 2023
From Amiram Eldar, Oct 30 2023: (Start)
Multiplicative with a(p^e) = p^(2*e) * (p^(9*e+9)-1)/(p^9-1).
Dirichlet g.f.: zeta(s-2)*zeta(s-11). (End)
Showing 1-3 of 3 results.