cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A282898 Numerator of the coefficients of the series expansion of the Riemann-Siegel theta function at infinity.

Original entry on oeis.org

1, 7, 31, 127, 511, 1414477, 8191, 118518239, 5749691557, 91546277357, 23273283019, 1982765468311237, 22076500342261, 455371239541065869, 925118910976041358111, 16555640865486520478399, 1302480594081611886641, 904185845619475242495834469891
Offset: 1

Views

Author

Mats Granvik and Robert G. Wilson v, Feb 24 2017

Keywords

Comments

See "RiemannSiegelTheta" in the help file of Mathematica, Series expansion at infinity.

Crossrefs

Differs from A036282.

Programs

  • Mathematica
    Numerator[ DeleteCases[ CoefficientList[ CoefficientList[ Series[ RiemannSiegelTheta[ t], {t, Infinity, 41}], 1/t^_] + Pi/8 + t/2 + t*Log[2]/2 + t*Log[Pi]/2 + t*Log[1/t]/2, 1/t][[1]], 0]]

A114721 Denominator of expansion of RiemannSiegelTheta(t) about infinity.

Original entry on oeis.org

48, 5760, 80640, 430080, 1216512, 1476034560, 2555904, 8021606400, 64012419072, 131491430400, 3472883712, 25282593423360, 20132659200, 25222195445760, 2675794690179072, 2172909854392320, 6803228196864
Offset: 1

Views

Author

Eric W. Weisstein, Dec 27 2005

Keywords

Examples

			RiemannSiegelTheta(t) = -Pi/8 + t*(-1/2 - log(2)/2 - log(Pi)/2 - log(t^(-1))/2) + 1/(48*t) + 7/(5760*t^3) + 31/(80640*t^5) + ...
		

References

  • H. M. Edwards, Riemann's Zeta Function, Dover Publications, New York, 1974 (ISBN 978-0-486-41740-0), p. 120.

Crossrefs

Cf. A036282, A282898 (numerators), A282899.

Programs

  • Mathematica
    a[n_] := (-1)^n*BernoulliB[2*n, 1/2]/(4*n*(2*n-1)) // Denominator; Table[a[n], {n, 1, 16}] (* Jean-François Alcover, Aug 04 2014 *)
  • PARI
    a(n) = denominator(subst(bernpol(2*n), x, 1/2)/(4*n*(2*n-1))); \\ Michel Marcus, Jun 20 2018

Formula

a(n) is the denominator of (-1)^n*BernoulliB(2*n, 1/2)/(4*n*(2*n-1)).
Showing 1-2 of 2 results.