cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A036282 Write cosec x = 1/x + Sum_{n>=1} e_n * x^(2n-1)/(2n-1)!; sequence gives numerators of e_n.

Original entry on oeis.org

1, 7, 31, 127, 511, 1414477, 8191, 118518239, 5749691557, 91546277357, 162912981133, 1982765468311237, 22076500342261, 455371239541065869, 925118910976041358111, 16555640865486520478399, 1302480594081611886641, 904185845619475242495834469891
Offset: 1

Views

Author

Keywords

Comments

From Johannes W. Meijer, May 24 2009: (Start)
Absolute value of numerator of [2^(2n-1) - 1] * Bernoulli(2n)/n.
Equals the absolute values of the numerators of the LS1[ -2*m,n=1] matrix coefficients of A160487 for m = 1, 2, .. ,.
(End)

Examples

			cosec x
= x^(-1) + 1/6*x + 7/360*x^3 + 31/15120*x^5 + ...
= x^(-1) + 1/6 * x/1! + 7/60 * x^3/3! + 31/126 * x^5/5! + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, Tenth Printing, 1972, p. 75 (4.3.68).

Crossrefs

Cf. A160487.
Differs from A282898.

Programs

  • Maple
    a:= n-> (m-> numer(coeff(series(csc(x), x, m+1), x, m)*m!))(2*n-1):
    seq(a(n), n=1..20);  # Alois P. Heinz, Jun 21 2018
  • Mathematica
    a[n_] := Abs[ Numerator[ (2^(2*n-1)-1) * BernoulliB[2*n]/n ] ]; Table[a[n], {n, 1, 18}] (* Jean-François Alcover, May 31 2013, after Johannes W. Meijer *)
  • PARI
    a(n) = abs(numerator((2^(2*n-1)-1)*bernfrac(2*n)/n)); \\ Michel Marcus, Mar 01 2015

Extensions

Title corrected and offset changed by Johannes W. Meijer, May 21 2009

A114721 Denominator of expansion of RiemannSiegelTheta(t) about infinity.

Original entry on oeis.org

48, 5760, 80640, 430080, 1216512, 1476034560, 2555904, 8021606400, 64012419072, 131491430400, 3472883712, 25282593423360, 20132659200, 25222195445760, 2675794690179072, 2172909854392320, 6803228196864
Offset: 1

Views

Author

Eric W. Weisstein, Dec 27 2005

Keywords

Examples

			RiemannSiegelTheta(t) = -Pi/8 + t*(-1/2 - log(2)/2 - log(Pi)/2 - log(t^(-1))/2) + 1/(48*t) + 7/(5760*t^3) + 31/(80640*t^5) + ...
		

References

  • H. M. Edwards, Riemann's Zeta Function, Dover Publications, New York, 1974 (ISBN 978-0-486-41740-0), p. 120.

Crossrefs

Cf. A036282, A282898 (numerators), A282899.

Programs

  • Mathematica
    a[n_] := (-1)^n*BernoulliB[2*n, 1/2]/(4*n*(2*n-1)) // Denominator; Table[a[n], {n, 1, 16}] (* Jean-François Alcover, Aug 04 2014 *)
  • PARI
    a(n) = denominator(subst(bernpol(2*n), x, 1/2)/(4*n*(2*n-1))); \\ Michel Marcus, Jun 20 2018

Formula

a(n) is the denominator of (-1)^n*BernoulliB(2*n, 1/2)/(4*n*(2*n-1)).

A282899 Denominators/48 of the coefficients of the series expansion of the Riemann-Siegel theta function at infinity.

Original entry on oeis.org

1, 120, 1680, 8960, 25344, 30750720, 53248, 167116800, 1333592064, 2739404800, 72351744, 526720696320, 419430400, 525462405120, 55745722712064, 45268955299840, 141733920768, 3462000479620300800, 2542620639232, 483482750523801600, 284950532966055936
Offset: 1

Views

Author

Mats Granvik and Robert G. Wilson v, Feb 24 2017

Keywords

Comments

See "RiemannSiegelTheta" in the help file of Mathematica, Series expansion at infinity.

Crossrefs

Cf. A114721, A282898 (numerators).

Programs

  • Mathematica
    Denominator[ DeleteCases[ CoefficientList[ CoefficientList[ Series[ RiemannSiegelTheta[ t], {t, Infinity, 41}], 1/t^_] + Pi/8 + t/2 + t*Log[2]/2 + t*Log[Pi]/2 + t*Log[1/t]/2, 1/t][[1]], 0]]/48
Showing 1-3 of 3 results.