A283533 a(n) = Sum_{d|n} d^(2*d + 1).
1, 33, 2188, 262177, 48828126, 13060696236, 4747561509944, 2251799813947425, 1350851717672994277, 1000000000000048828158, 895430243255237372246532, 953962166440690142662256812, 1192533292512492016559195008118
Offset: 1
Keywords
Examples
a(6) = 1^(2+1) + 2^(4+1) + 3^(6+1) + 6^(12+1) = 13060696236.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..214
Programs
-
Mathematica
f[n_] := Block[{d = Divisors[n]}, Total[d^(2 d + 1)]]; Array[f, 14] (* Robert G. Wilson v, Mar 10 2017 *)
-
PARI
a(n) = sumdiv(n, d, d^(2*d+1)); \\ Michel Marcus, Mar 11 2017
-
PARI
N=20; x='x+O('x^N); Vec(x*deriv(-log(prod(k=1, N, (1-x^k)^k^(2*k))))) \\ Seiichi Manyama, Jun 18 2019
Formula
L.g.f.: -log(Product_{k>=1} (1 - x^k)^(k^(2*k))) = Sum_{k>=1} a(k)*x^k/k. - Seiichi Manyama, Jun 18 2019
Comments