A283743 Decimal expansion of Ei(1)/e, where Ei is the exponential integral function.
6, 9, 7, 1, 7, 4, 8, 8, 3, 2, 3, 5, 0, 6, 6, 0, 6, 8, 7, 6, 5, 4, 7, 8, 6, 8, 1, 9, 1, 9, 5, 5, 1, 5, 9, 5, 3, 1, 7, 1, 7, 5, 4, 3, 0, 9, 5, 4, 3, 6, 9, 5, 1, 7, 3, 2, 0, 0, 5, 4, 8, 0, 7, 7, 8, 9, 4, 5, 4, 1, 1, 5, 1, 9, 5, 1, 4, 4, 2, 6, 9, 6, 2, 9, 1, 0, 0, 5, 3, 0, 3, 0, 3, 3, 3, 9, 1, 1, 4, 0, 0, 6
Offset: 0
Examples
0.6971748832350660687654786819195515953171754309543695173200548...
References
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 44, equation 44:5:10 at page 426.
Links
- Jeffrey C. Lagarias, Euler's constant: Euler's work and modern developments, arXiv:1303.1856 [math.NT], 2013; Bull. Amer. Math. Soc., 50 (2013), 527-628.
- Eric Weisstein's World of Mathematics, Exponential Integral.
- Eric Weisstein's World of Mathematics, Subfactorial.
Crossrefs
Programs
-
Mathematica
RealDigits[ExpIntegralEi[1]/E, 10, 102][[1]]
-
PARI
real(-eint1(-1)/exp(1)) \\ Michel Marcus, Jun 15 2020
Formula
Equals Re(subfactorial(-1)) = Re(Gamma(0,-1)/e).
Equals Sum_{k=1..oo} (-1)^k*psi(k)/Gamma(k), where psi denotes the digamma function (see Spanier and Oldham). - Stefano Spezia, Jan 04 2025
Comments