cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A283743 Decimal expansion of Ei(1)/e, where Ei is the exponential integral function.

Original entry on oeis.org

6, 9, 7, 1, 7, 4, 8, 8, 3, 2, 3, 5, 0, 6, 6, 0, 6, 8, 7, 6, 5, 4, 7, 8, 6, 8, 1, 9, 1, 9, 5, 5, 1, 5, 9, 5, 3, 1, 7, 1, 7, 5, 4, 3, 0, 9, 5, 4, 3, 6, 9, 5, 1, 7, 3, 2, 0, 0, 5, 4, 8, 0, 7, 7, 8, 9, 4, 5, 4, 1, 1, 5, 1, 9, 5, 1, 4, 4, 2, 6, 9, 6, 2, 9, 1, 0, 0, 5, 3, 0, 3, 0, 3, 3, 3, 9, 1, 1, 4, 0, 0, 6
Offset: 0

Views

Author

Jean-François Alcover, Mar 15 2017

Keywords

Comments

Can be considered the value of the divergent series -0! - 1! - 2! - ... ; see Lagarias reference Section 2.5. - Harry Richman, Jun 14 2020.

Examples

			0.6971748832350660687654786819195515953171754309543695173200548...
		

References

  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 44, equation 44:5:10 at page 426.

Crossrefs

Cf. A000166 (subfactorials), A061382 (Pi/e, the imaginary part of subfactorial(-1)), A091725 (Ei(1)), A073003 (-exp(1)*Ei(-1)).

Programs

  • Mathematica
    RealDigits[ExpIntegralEi[1]/E, 10, 102][[1]]
  • PARI
    real(-eint1(-1)/exp(1)) \\ Michel Marcus, Jun 15 2020

Formula

Equals Re(subfactorial(-1)) = Re(Gamma(0,-1)/e).
Equals Sum_{k=1..oo} (-1)^k*psi(k)/Gamma(k), where psi denotes the digamma function (see Spanier and Oldham). - Stefano Spezia, Jan 04 2025