cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A073003 Decimal expansion of -exp(1)*Ei(-1), also called Gompertz's constant, or the Euler-Gompertz constant.

Original entry on oeis.org

5, 9, 6, 3, 4, 7, 3, 6, 2, 3, 2, 3, 1, 9, 4, 0, 7, 4, 3, 4, 1, 0, 7, 8, 4, 9, 9, 3, 6, 9, 2, 7, 9, 3, 7, 6, 0, 7, 4, 1, 7, 7, 8, 6, 0, 1, 5, 2, 5, 4, 8, 7, 8, 1, 5, 7, 3, 4, 8, 4, 9, 1, 0, 4, 8, 2, 3, 2, 7, 2, 1, 9, 1, 1, 4, 8, 7, 4, 4, 1, 7, 4, 7, 0, 4, 3, 0, 4, 9, 7, 0, 9, 3, 6, 1, 2, 7, 6, 0, 3, 4, 4, 2, 3, 7
Offset: 0

Views

Author

Robert G. Wilson v, Aug 03 2002

Keywords

Comments

0! - 1! + 2! - 3! + 4! - 5! + ... = (Borel) Sum_{n>=0} (-y)^n n! = KummerU(1,1,1/y)/y.
Decimal expansion of phi(1) where phi(x) = Integral_{t>=0} e^-t/(x+t) dt. - Benoit Cloitre, Apr 11 2003
The divergent series g(x=1,m) = 1^m*1! - 2^m*2! + 3^m*3! - 4^m*4! + ..., m => -1, is intimately related to Gompertz's constant. We discovered that g(x=1,m) = (-1)^m * (A040027(m) - A000110(m+1) * A073003) with A000110 the Bell numbers and A040027 a sequence that was published by Gould, see for more information A163940. - Johannes W. Meijer, Oct 16 2009
Named by Le Lionnais (1983) after the English self-educated mathematician and actuary Benjamin Gompertz (1779 - 1865). It was named the Euler-Gompertz constant by Finch (2003). Lagarias (2013) noted that he has not located this constant in Gompertz's writings. - Amiram Eldar, Aug 15 2020

Examples

			0.59634736232319407434107849936927937607417786015254878157348491...
With n := 10^5, Sum_{k >= 0} (n/(n + 1))^k/(n + k) = 0.5963(51...). - _Peter Bala_, Jun 19 2024
		

References

  • Bruce C. Berndt, Ramanujan's notebooks Part II, Springer, p. 171
  • Bruce C. Berndt, Ramanujan's notebooks Part I, Springer, p. 144-145.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 303, 424-425.
  • Francois Le Lionnais, Les nombres remarquables, Paris: Hermann, 1983. See p. 29.
  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 44, page 426.
  • H. S. Wall, Analytic Theory of Continued Fractions, Van Nostrand, New York, 1948, p. 356.

Crossrefs

Cf. A000522 (arrangements), A001620, A000262, A002720, A002793, A058006 (alternating factorial sums), A091725, A099285, A153229, A201203, A245780, A283743 (Ei(1)/e), A321942, A369883.

Programs

  • Magma
    SetDefaultRealField(RealField(100)); ExponentialIntegralE1(1)*Exp(1); // G. C. Greubel, Dec 04 2018
    
  • Mathematica
    RealDigits[N[-Exp[1]*ExpIntegralEi[-1], 105]][[1]]
    (* Second program: *)
    G = 1/Fold[Function[2*#2 - #2^2/#1], 2, Reverse[Range[10^4]]] // N[#, 105]&; RealDigits[G] // First (* Jean-François Alcover, Sep 19 2014 *)
  • PARI
    eint1(1)*exp(1) \\ Charles R Greathouse IV, Apr 23 2013
    
  • Sage
    numerical_approx(exp_integral_e(1,1)*exp(1), digits=100) # G. C. Greubel, Dec 04 2018

Formula

phi(1) = e*(Sum_{k>=1} (-1)^(k-1)/(k*k!) - Gamma) = 0.596347362323194... where Gamma is the Euler constant.
G = 0.596347... = 1/(1+1/(1+1/(1+2/(1+2/(1+3/(1+3/(1+4/(1+4/(1+5/(1+5/(1+6/(... - Philippe Deléham, Aug 14 2005
Equals A001113*A099285. - Johannes W. Meijer, Oct 16 2009
From Peter Bala, Oct 11 2012: (Start)
Stieltjes found the continued fraction representation G = 1/(2 - 1^2/(4 - 2^2/(6 - 3^2/(8 - ...)))). See [Wall, Chapter 18, (92.7) with a = 1]. The sequence of convergents to the continued fraction begins [1/2, 4/7, 20/34, 124/209, ...]. The numerators are in A002793 and the denominators in A002720.
Also, 1 - G has the continued fraction representation 1/(3 - 2/(5 - 6/(7 - ... -n*(n+1)/((2*n+3) - ...)))) with convergents beginning [1/3, 5/13, 29/73, 201/501, ...]. The numerators are in A201203 (unsigned) and the denominators are in A000262.
(End)
G = f(1) with f solution to the o.d.e. x^2*f'(x) + (x+1)*f(x)=1 such that f(0)=1. - Jean-François Alcover, May 28 2013
From Amiram Eldar, Aug 15 2020: (Start)
Equals Integral_{x=0..1} 1/(1-log(x)) dx.
Equals Integral_{x=1..oo} exp(1-x)/x dx.
Equals Integral_{x=0..oo} exp(-x)*log(x+1) dx.
Equals Integral_{x=0..oo} exp(-x)/(x+1) dx. (End)
From Gleb Koloskov, May 01 2021: (Start)
Equals Integral_{x=0..1} LambertW(e/x)-1 dx.
Equals Integral_{x=0..1} 1+1/LambertW(-1,-x/e) dx. (End)
Equals lim_{n->oo} A040027(n)/A000110(n+1). - Vaclav Kotesovec, Feb 22 2021
G = lim_{n->oo} A321942(n)/A000262(n). - Peter Bala, Mar 21 2022
Equals Sum_{n >= 1} 1/(n*L(n, -1)*L(n-1, -1)), where L(n, x) denotes the n-th Laguerre polynomial. This is the case x = 1 of the identity Integral_{t >= 0} exp(-t)/(x + t) dt = Sum_{n >= 1} 1/(n*L(n, -x)*L(n-1, -x)) valid for Re(x) > 0. - Peter Bala, Mar 21 2024
Equals lim_{n->oo} Sum_{k >= 0} (n/(n + 1))^k/(n + k). Cf. A099285. - Peter Bala, Jun 18 2024

Extensions

Additional references from Gerald McGarvey, Oct 10 2005
Link corrected by Johannes W. Meijer, Aug 01 2009

A348573 Decimal expansion of exp(-1) * (Ei(1) - gamma).

Original entry on oeis.org

4, 8, 4, 8, 2, 9, 1, 0, 6, 9, 9, 5, 6, 8, 7, 6, 4, 6, 3, 1, 0, 4, 0, 1, 4, 1, 4, 2, 2, 1, 7, 3, 0, 5, 7, 4, 7, 2, 4, 4, 6, 9, 9, 5, 2, 8, 2, 3, 9, 7, 3, 2, 1, 4, 5, 6, 2, 6, 6, 5, 7, 3, 6, 6, 0, 3, 9, 7, 4, 5, 0, 3, 2, 5, 5, 8, 5, 4, 6, 8, 2, 0, 9, 1, 0, 9, 7, 0, 2, 7, 1, 4, 5, 6, 1, 3, 1, 1, 9, 3, 3, 5, 4, 1, 5, 8, 0, 7, 6, 5
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 23 2021

Keywords

Examples

			0.48482910699568764631040141422173057472446995282397321...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Exp[-1] (ExpIntegralEi[1] - EulerGamma), 10, 110] [[1]]
  • PARI
    (-real(eint1(-1))-Euler)/exp(1) \\ Michel Marcus, Oct 24 2021

Formula

Equals Sum_{k>=1} (-1)^(k+1) * H(k) / k!, where H(k) is the k-th harmonic number.
Equals -Integral_{x=0..1} exp(-x)*log(1-x) dx. - Amiram Eldar, Oct 23 2021

A379855 Decimal expansion of Pi*BesselY(0,2)/2.

Original entry on oeis.org

8, 0, 1, 6, 9, 6, 2, 3, 1, 8, 8, 3, 6, 9, 4, 2, 1, 5, 4, 2, 5, 9, 7, 4, 3, 6, 8, 6, 7, 1, 4, 0, 6, 1, 9, 6, 5, 5, 7, 2, 8, 8, 4, 0, 2, 2, 0, 4, 7, 9, 5, 0, 6, 9, 4, 7, 6, 0, 9, 5, 1, 0, 8, 9, 0, 2, 6, 3, 0, 3, 1, 3, 7, 6, 4, 9, 1, 6, 5, 8, 1, 1, 4, 6, 0, 4, 6, 4
Offset: 0

Views

Author

Stefano Spezia, Jan 04 2025

Keywords

Examples

			0.8016962318836942154259743686714061965572884022...
		

References

  • Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 44, equation 44:5:11 at page 426.

Crossrefs

Programs

  • Mathematica
    RealDigits[Pi*BesselY[0,2]/2,10,100][[1]]

Formula

Equals Sum_{k>=1} (-1)^k*psi(k)/Gamma(k)^2, where psi denotes the digamma function (see Spanier and Oldham).
Showing 1-3 of 3 results.