A284341 Sum of the divisors of n that are not divisible by 8.
1, 3, 4, 7, 6, 12, 8, 7, 13, 18, 12, 28, 14, 24, 24, 7, 18, 39, 20, 42, 32, 36, 24, 28, 31, 42, 40, 56, 30, 72, 32, 7, 48, 54, 48, 91, 38, 60, 56, 42, 42, 96, 44, 84, 78, 72, 48, 28, 57, 93, 72, 98, 54, 120, 72, 56, 80, 90, 60, 168, 62, 96, 104, 7, 84, 144, 68
Offset: 1
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Table[Sum[Boole[Mod[d,8]>0] d , {d, Divisors[n]}], {n, 100}] (* Indranil Ghosh, Mar 25 2017 *) Table[Total[DeleteCases[Divisors[n],?(Divisible[#,8]&)]],{n,120}] (* _Harvey P. Dale, Mar 18 2018 *) f[p_, e_] := If[p == 2 && e >= 3, 7, (p^(e + 1) - 1)/(p - 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 17 2020 *)
-
PARI
for(n=1, 100, print1(sumdiv(n, d, ((d%8)>0)*d),", ")) \\ Indranil Ghosh, Mar 25 2017
-
Python
from sympy import divisors print([sum([i for i in divisors(n) if i%8]) for n in range(1, 101)]) # Indranil Ghosh, Mar 25 2017
Formula
G.f.: Sum_{k>=1} k*x^k/(1 - x^k) - 8*k*x^(8*k)/(1 - x^(8*k)). - Ilya Gutkovskiy, Mar 25 2017
Multiplicative with a(2^e) = 7 if e>=3, and a(p^e) = (p^(e + 1) - 1)/(p - 1) otherwise. - Amiram Eldar, Sep 17 2020
Sum_{k=1..n} a(k) ~ (7*Pi^2/96) * n^2. - Amiram Eldar, Oct 04 2022
Extensions
Keyword:mult added by Andrew Howroyd, Jul 20 2018