cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A261775 Expansion of Product_{k>=1} (1 - x^(8*k))/(1 - x^k).

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 21, 29, 40, 53, 72, 94, 124, 161, 208, 266, 341, 431, 545, 684, 856, 1064, 1322, 1631, 2009, 2464, 3014, 3672, 4467, 5411, 6543, 7888, 9489, 11383, 13632, 16280, 19409, 23088, 27415, 32483, 38430, 45371, 53485, 62939, 73950, 86742
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 31 2015

Keywords

Comments

Number of partitions in which no part occurs more than 7 times. - Ilya Gutkovskiy, May 31 2017

Crossrefs

Number of r-regular partitions for r = 2 through 12: A000009, A000726, A001935, A035959, A219601, A035985, A261775, A104502, A261776, A328545, A328546.

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(a(n-j)*add(d*
         signum(irem(d, 8)), d=numtheory[divisors](j)), j=1..n)/n)
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Aug 07 2022
  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^(8*k))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    Table[Count[IntegerPartitions@n, x_ /; ! MemberQ [Mod[x, 8], 0, 2] ], {n, 0, 47}] (* Robert Price, Jul 28 2020 *)
  • PARI
    Vec(prod(k=1, 51, (1 - x^(8*k))/(1 - x^k)) + O(x^51)) \\ Indranil Ghosh, Mar 25 2017

Formula

a(n) ~ Pi*sqrt(7) * BesselI(1, sqrt(7*(24*n + 7)/8) * Pi/6) / (4*sqrt(24*n + 7)) ~ exp(Pi*sqrt(7*n/3)/2) * 7^(1/4) / (2^(7/2) * 3^(1/4) * n^(3/4)) * (1 + (7^(3/2)*Pi/(96*sqrt(3)) - 3*sqrt(3)/(4*Pi*sqrt(7))) / sqrt(n) + (343*Pi^2/55296 - 45/(224*Pi^2) - 35/128) / n). - Vaclav Kotesovec, Aug 31 2015, extended Jan 14 2017
a(n) = (1/n)*Sum_{k=1..n} A284341(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 25 2017
G.f.: A(x)*A(x^2)*A(x^4) where A(x) is the o.g.f. for A000009. (see Flajolet, Sedgewick link) - Geoffrey Critzer, Aug 07 2022

A116607 Sum of the divisors of n which are not divisible by 9.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 4, 18, 12, 28, 14, 24, 24, 31, 18, 12, 20, 42, 32, 36, 24, 60, 31, 42, 4, 56, 30, 72, 32, 63, 48, 54, 48, 28, 38, 60, 56, 90, 42, 96, 44, 84, 24, 72, 48, 124, 57, 93, 72, 98, 54, 12, 72, 120, 80, 90, 60, 168, 62, 96, 32, 127, 84, 144, 68, 126, 96
Offset: 1

Views

Author

Michael Somos, Feb 19 2006

Keywords

Examples

			q + 3*q^2 + 4*q^3 + 7*q^4 + 6*q^5 + 12*q^6 + 8*q^7 + 15*q^8 + 4*q^9 + ...
		

References

  • B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 475 Entry 7(i).

Crossrefs

A096726(n) = 3*a(n) if n>0.

Programs

  • Mathematica
    With[{c=9Range[20]},Table[Total[Complement[Divisors[i],c]],{i,80}]] (* Harvey P. Dale, Dec 19 2010 *)
    Drop[CoefficientList[Series[Sum[k * x^k /(1 - x^k) - 9*k * x^(9*k) / (1 - x^(9*k)) , {k, 1, 100}], {x, 0, 100}], x], 1] (* Indranil Ghosh, Mar 25 2017 *)
    f[p_, e_] := If[p == 3, 4, (p^(e + 1) - 1)/(p - 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 17 2020 *)
  • PARI
    {a(n) = if( n<1, 0, sigma(n) - if( n%9==0, 9 * sigma(n/9)))}
    
  • PARI
    {a(n) = polcoeff( sum( k=1, n, k * (x^k /(1 - x^k) - 9 * x^(9*k) /(1 - x^(9*k))), x * O(x^n)), n)}
    
  • PARI
    q='q+O('q^66); Vec( (eta(q^3)^10/(eta(q)*eta(q^9))^3 - 1) /3 ) \\ Joerg Arndt, Mar 25 2017
    
  • Python
    from sympy import divisors
    print([sum(i for i in divisors(n) if i%9) for n in range(1, 101)]) # Indranil Ghosh, Mar 25 2017

Formula

Expansion of (eta(q^3)^10 / (eta(q) eta(q^9))^3 - 1) / 3 in powers of q.
a(n) is multiplicative with a(3^e) = 4 if e>0, a(p^e) = (p^(e+1) - 1) / (p - 1) otherwise.
G.f.: Sum_{k>0} k * x^k /(1 - x^k) - 9*k * x^(9*k) / (1 - x^(9*k)).
L.g.f.: log(Product_{k>=1} (1 - x^(9*k))/(1 - x^k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Mar 14 2018
Sum_{k=1..n} a(k) ~ (2*Pi^2/27) * n^2. - Amiram Eldar, Oct 04 2022

A284326 Sum of the divisors of n that are not divisible by 6.

Original entry on oeis.org

1, 3, 4, 7, 6, 6, 8, 15, 13, 18, 12, 10, 14, 24, 24, 31, 18, 15, 20, 42, 32, 36, 24, 18, 31, 42, 40, 56, 30, 36, 32, 63, 48, 54, 48, 19, 38, 60, 56, 90, 42, 48, 44, 84, 78, 72, 48, 34, 57, 93, 72, 98, 54, 42, 72, 120, 80, 90, 60, 60, 62, 96, 104, 127, 84, 72, 68
Offset: 1

Views

Author

Seiichi Manyama, Mar 25 2017

Keywords

Crossrefs

Cf. Sum of the divisors of n that are not divisible by k: A046913 (k=3), A046897 (k=4), A116073 (k=5), this sequence (k=6), A113957 (k=7), A284341 (k=8), A116607 (k=9), A284344 (k=10).

Programs

  • Mathematica
    Table[Sum[Boole[Mod[d,6]>0] d , {d, Divisors[n]}], {n,100}] (* Indranil Ghosh, Mar 25 2017 *)
    Table[Total[Select[Divisors[n],Mod[#,6]!=0&]],{n,100}] (* Harvey P. Dale, Feb 25 2020 *)
  • PARI
    for(n=1, 100, print1(sumdiv(n, d, ((d%6)>0)*d),", ")) \\ Indranil Ghosh, Mar 25 2017
    
  • Python
    from sympy import divisors
    print([sum([i for i in divisors(n) if i%6]) for n in range(1, 101)]) # Indranil Ghosh, Mar 25 2017

Formula

G.f.: Sum_{k>=1} k*x^k/(1 - x^k) - 6*k*x^(6*k)/(1 - x^(6*k)). - Ilya Gutkovskiy, Mar 25 2017
Sum_{k=1..n} a(k) ~ (5*Pi^2/72) * n^2. - Amiram Eldar, Oct 04 2022
Dirichlet g.f. (1-6^(1-s))*zeta(s-1)*zeta(s), but not multiplicative. - R. J. Mathar, May 17 2023

A284344 Sum of the divisors of n that are not divisible by 10.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 13, 8, 12, 28, 14, 24, 24, 31, 18, 39, 20, 12, 32, 36, 24, 60, 31, 42, 40, 56, 30, 32, 32, 63, 48, 54, 48, 91, 38, 60, 56, 20, 42, 96, 44, 84, 78, 72, 48, 124, 57, 33, 72, 98, 54, 120, 72, 120, 80, 90, 60, 48, 62, 96, 104, 127, 84, 144
Offset: 1

Views

Author

Seiichi Manyama, Mar 25 2017

Keywords

Crossrefs

Cf. A261776.
Cf. Sum of the divisors of n that are not divisible by k: A046913 (k=3), A046897 (k=4), A116073 (k=5), A284326 (k=6), A113957 (k=7), A284341 (k=8), A116607 (k=9), this sequence (k=10).

Programs

  • Mathematica
    Table[Sum[Boole[Mod[d, 10]>0] d , {d, Divisors[n]}], {n, 100}] (* Indranil Ghosh, Mar 25 2017 *)
    Table[Total[Select[Divisors[n],Last[IntegerDigits[#]]!=0&]],{n,70}] (* Harvey P. Dale, Jun 29 2022 *)
  • PARI
    for(n=1, 100, print1(sumdiv(n, d, ((d%10)>0)*d), ", ")) \\ Indranil Ghosh, Mar 25 2017
    
  • Python
    from sympy import divisors
    print([sum([i for i in divisors(n) if i%10]) for n in range(1, 101)]) # Indranil Ghosh, Mar 25 2017

Formula

G.f.: Sum_{k>=1} k*x^k/(1 - x^k) - 10*k*x^(10*k)/(1 - x^(10*k)). - Ilya Gutkovskiy, Mar 25 2017
Sum_{k=1..n} a(k) ~ (3*Pi^2/40) * n^2. - Amiram Eldar, Oct 04 2022

A377520 The sum of the divisors of n that are terms in A207481.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 7, 13, 18, 12, 28, 14, 24, 24, 7, 18, 39, 20, 42, 32, 36, 24, 28, 31, 42, 40, 56, 30, 72, 32, 7, 48, 54, 48, 91, 38, 60, 56, 42, 42, 96, 44, 84, 78, 72, 48, 28, 57, 93, 72, 98, 54, 120, 72, 56, 80, 90, 60, 168, 62, 96, 104, 7, 84, 144, 68
Offset: 1

Views

Author

Amiram Eldar, Oct 30 2024

Keywords

Comments

First differs from A284341 at n = 81 = 3^4: a(81) = 40, while A284341(81) = 121.
The number of these divisors is A377519(n), and the largest of them is A377518(n).

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := (p^(Min[p, e] + 1) - 1)/(p-1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i,1]^(min(f[i,1], f[i,2]) + 1) - 1)/(f[i,1] - 1));}

Formula

a(n) = A000203(A377518(n)).
Multiplicative with a(p^e) = (p^(min(p, e)+1) - 1)/(p - 1).
Dirichlet g.f.: zeta(s-1) * zeta(s) * Product_{p prime} (p^((p+1)*s) - p^(p+1))/p^((p+1)*s).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(2) * Product_{p prime} (1 - 1/p^(p+1)) = 1.42145673335960701365... .

A284587 Sum of the divisors of n that are not divisible by 13.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 1, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24, 60, 31, 3, 40, 56, 30, 72, 32, 63, 48, 54, 48, 91, 38, 60, 4, 90, 42, 96, 44, 84, 78, 72, 48, 124, 57, 93, 72, 7, 54, 120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 127, 6, 144, 68
Offset: 1

Views

Author

Seiichi Manyama, Mar 29 2017

Keywords

Crossrefs

Sum of the divisors of n that are not divisible by k: A046913 (k=3), A046897 (k=4), A116073 (k=5), A284326 (k=6), A113957 (k=7), A284341 (k=8), A116607 (k=9), A284344 (k=10), this sequence (k=13), A227131 (k=25).

Programs

  • Mathematica
    Table[Sum[Boole[Mod[d, 13]>0] d , {d, Divisors[n]}], {n, 100}] (* Indranil Ghosh, Mar 29 2017 *)
    f[p_, e_] := If[p == 13, 1, (p^(e+1)-1)/(p-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 17 2020 *)
  • PARI
    a(n)=sumdiv(n, d, ((d%13)>0)*d); \\ Andrew Howroyd, Jul 20 2018

Formula

G.f.: Sum_{k>=1} k*x^k/(1 - x^k) - 13*k*x^(13*k)/(1 - x^(13*k)). - Ilya Gutkovskiy, Mar 30 2017
Multiplicative with a(13^e) = 1 and a(p^e) = (p^(e+1)-1)/(p-1) otherwise. - Amiram Eldar, Sep 17 2020
Sum_{k=1..n} a(k) ~ (Pi^2/13) * n^2. - Amiram Eldar, Oct 04 2022

Extensions

Keyword:mult added by Andrew Howroyd, Jul 20 2018

A285344 (A285342)/2.

Original entry on oeis.org

1, 3, 4, 6, 8, 10, 11, 13, 14, 16, 18, 20, 21, 23, 25, 27, 28, 30, 32, 34, 35, 37, 38, 40, 42, 44, 45, 47, 48, 50, 52, 54, 55, 57, 59, 61, 62, 64, 66, 68, 69, 71, 72, 74, 76, 78, 79, 81, 83, 85, 86, 88, 90, 92, 93, 95, 96, 98, 100, 102, 103, 105, 107, 109
Offset: 1

Views

Author

Clark Kimberling, Apr 25 2017

Keywords

Crossrefs

Programs

  • Mathematica
    s = Nest[Flatten[# /. {0 -> {1, 0}, 1 -> {1, 0, 1, 1}}] &, {0}, 10] (* A285341 *)
    u = Flatten[Position[s, 0]]  (* A285342 *)
    Flatten[Position[s, 1]]  (* A285343 *)
    u/2 (* A285344)

A287926 Sum of the divisors of n that are not divisible by 49.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 63, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 124, 8, 93, 72, 98, 54, 120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 127, 84, 144
Offset: 1

Views

Author

Seiichi Manyama, Jun 15 2017

Keywords

Crossrefs

Sum of the divisors of n that are not divisible by k: A046913 (k=3), A046897 (k=4), A116073 (k=5), A284326 (k=6), A113957 (k=7), A284341 (k=8), A116607 (k=9), A284344 (k=10), A227131 (k=25), this sequence (k=49).

Programs

  • Mathematica
    f[p_, e_] := If[p == 7, 8, (p^(e+1)-1)/(p-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 17 2020 *)
  • PARI
    a(n)=sumdiv(n, d, ((d%49)>0)*d); \\ Andrew Howroyd, Jul 20 2018

Formula

Multiplicative with a(7^e) = 8 and a(p^e) = (p^(e+1)-1)/(p-1) otherwise. - Amiram Eldar, Sep 17 2020
Sum_{k=1..n} a(k) ~ (4*Pi^2/49) * n^2. - Amiram Eldar, Oct 04 2022

Extensions

Keyword:mult added by Andrew Howroyd, Jul 20 2018
Showing 1-8 of 8 results.