cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A261776 Expansion of Product_{k>=1} (1 - x^(10*k))/(1 - x^k).

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 41, 55, 75, 98, 130, 169, 220, 282, 363, 460, 584, 735, 923, 1151, 1435, 1775, 2194, 2698, 3311, 4045, 4935, 5994, 7270, 8787, 10600, 12749, 15310, 18330, 21912, 26130, 31107, 36949, 43823, 51863, 61290, 72293, 85145, 100107
Offset: 0

Views

Author

Vaclav Kotesovec, Aug 31 2015

Keywords

Comments

General asymptotic formula (Hagis, 1971): If s > 1 and g.f. = Product_{k>=1} (1 - x^(s*k))/(1 - x^k), then a(n) ~ exp(Pi*sqrt(2*n*(s-1)/(3*s))) * (s-1)^(1/4) / (2 * 6^(1/4) * s^(3/4) * n^(3/4)) * (1 + ((s-1)^(3/2)*Pi/(24*sqrt(6*s)) - 3*sqrt(6*s) / (16*Pi * sqrt(s-1))) / sqrt(n) + ((s-1)^3*Pi^2/(6912*s) - 45*s/(256*(s-1)*Pi^2) - 5*(s-1)/128) / n), minor asymptotic terms added by Vaclav Kotesovec, Jan 13 2017
The formula in the article by Noureddine Chair: "The Euler-Riemann Gases, and Partition Identities", p. 32, is incorrect (must be s -> s-1 and 24 -> 24*n).
Number of partitions in which no part occurs more than 9 times. - Ilya Gutkovskiy, May 31 2017

Crossrefs

Number of r-regular partitions for r = 2 through 12: A000009, A000726, A001935, A035959, A219601, A035985, A261775, A104502, A261776, A328545, A328546.

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[Product[(1 - x^(10*k))/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]
    Table[Count[IntegerPartitions@n, x_ /; ! MemberQ [Mod[x, 10], 0, 2] ], {n, 0, 47}] (* Robert Price, Jul 29 2020 *)
  • PARI
    Vec(prod(k=1, 51, (1 - x^(10*k))/(1 - x^k)) + O(x^51)) \\ Indranil Ghosh, Mar 25 2017

Formula

a(n) ~ 3*Pi * BesselI(1, sqrt((24*n + 9)/10) * Pi/2) / (5*sqrt(24*n + 9)) ~ exp(Pi*sqrt(3*n/5)) * 3^(1/4) / (4 * 5^(3/4) * n^(3/4)) * (1 + (3^(3/2)*Pi/(16*sqrt(5)) - sqrt(15)/(8*Pi)) / sqrt(n) + (27*Pi^2/2560 - 25/(128*Pi^2) - 45/128) / n). - Vaclav Kotesovec, Aug 31 2015, extended Jan 14 2017
a(n) = (1/n)*Sum_{k=1..n} A284344(k)*a(n-k), a(0) = 1. - Seiichi Manyama, Mar 25 2017

A284326 Sum of the divisors of n that are not divisible by 6.

Original entry on oeis.org

1, 3, 4, 7, 6, 6, 8, 15, 13, 18, 12, 10, 14, 24, 24, 31, 18, 15, 20, 42, 32, 36, 24, 18, 31, 42, 40, 56, 30, 36, 32, 63, 48, 54, 48, 19, 38, 60, 56, 90, 42, 48, 44, 84, 78, 72, 48, 34, 57, 93, 72, 98, 54, 42, 72, 120, 80, 90, 60, 60, 62, 96, 104, 127, 84, 72, 68
Offset: 1

Views

Author

Seiichi Manyama, Mar 25 2017

Keywords

Crossrefs

Cf. Sum of the divisors of n that are not divisible by k: A046913 (k=3), A046897 (k=4), A116073 (k=5), this sequence (k=6), A113957 (k=7), A284341 (k=8), A116607 (k=9), A284344 (k=10).

Programs

  • Mathematica
    Table[Sum[Boole[Mod[d,6]>0] d , {d, Divisors[n]}], {n,100}] (* Indranil Ghosh, Mar 25 2017 *)
    Table[Total[Select[Divisors[n],Mod[#,6]!=0&]],{n,100}] (* Harvey P. Dale, Feb 25 2020 *)
  • PARI
    for(n=1, 100, print1(sumdiv(n, d, ((d%6)>0)*d),", ")) \\ Indranil Ghosh, Mar 25 2017
    
  • Python
    from sympy import divisors
    print([sum([i for i in divisors(n) if i%6]) for n in range(1, 101)]) # Indranil Ghosh, Mar 25 2017

Formula

G.f.: Sum_{k>=1} k*x^k/(1 - x^k) - 6*k*x^(6*k)/(1 - x^(6*k)). - Ilya Gutkovskiy, Mar 25 2017
Sum_{k=1..n} a(k) ~ (5*Pi^2/72) * n^2. - Amiram Eldar, Oct 04 2022
Dirichlet g.f. (1-6^(1-s))*zeta(s-1)*zeta(s), but not multiplicative. - R. J. Mathar, May 17 2023

A284341 Sum of the divisors of n that are not divisible by 8.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 7, 13, 18, 12, 28, 14, 24, 24, 7, 18, 39, 20, 42, 32, 36, 24, 28, 31, 42, 40, 56, 30, 72, 32, 7, 48, 54, 48, 91, 38, 60, 56, 42, 42, 96, 44, 84, 78, 72, 48, 28, 57, 93, 72, 98, 54, 120, 72, 56, 80, 90, 60, 168, 62, 96, 104, 7, 84, 144, 68
Offset: 1

Views

Author

Seiichi Manyama, Mar 25 2017

Keywords

Crossrefs

Cf. Sum of the divisors of n that are not divisible by k: A046913 (k=3), A046897 (k=4), A116073 (k=5), A284326 (k=6), A113957 (k=7), this sequence (k=8), A116607 (k=9), A284344 (k=10).

Programs

  • Mathematica
    Table[Sum[Boole[Mod[d,8]>0] d , {d, Divisors[n]}], {n, 100}] (* Indranil Ghosh, Mar 25 2017 *)
    Table[Total[DeleteCases[Divisors[n],?(Divisible[#,8]&)]],{n,120}] (* _Harvey P. Dale, Mar 18 2018 *)
    f[p_, e_] := If[p == 2 && e >= 3, 7, (p^(e + 1) - 1)/(p - 1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 17 2020 *)
  • PARI
    for(n=1, 100, print1(sumdiv(n, d, ((d%8)>0)*d),", ")) \\ Indranil Ghosh, Mar 25 2017
    
  • Python
    from sympy import divisors
    print([sum([i for i in divisors(n) if i%8]) for n in range(1, 101)]) # Indranil Ghosh, Mar 25 2017

Formula

G.f.: Sum_{k>=1} k*x^k/(1 - x^k) - 8*k*x^(8*k)/(1 - x^(8*k)). - Ilya Gutkovskiy, Mar 25 2017
Multiplicative with a(2^e) = 7 if e>=3, and a(p^e) = (p^(e + 1) - 1)/(p - 1) otherwise. - Amiram Eldar, Sep 17 2020
Sum_{k=1..n} a(k) ~ (7*Pi^2/96) * n^2. - Amiram Eldar, Oct 04 2022

Extensions

Keyword:mult added by Andrew Howroyd, Jul 20 2018

A284587 Sum of the divisors of n that are not divisible by 13.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 1, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24, 60, 31, 3, 40, 56, 30, 72, 32, 63, 48, 54, 48, 91, 38, 60, 4, 90, 42, 96, 44, 84, 78, 72, 48, 124, 57, 93, 72, 7, 54, 120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 127, 6, 144, 68
Offset: 1

Views

Author

Seiichi Manyama, Mar 29 2017

Keywords

Crossrefs

Sum of the divisors of n that are not divisible by k: A046913 (k=3), A046897 (k=4), A116073 (k=5), A284326 (k=6), A113957 (k=7), A284341 (k=8), A116607 (k=9), A284344 (k=10), this sequence (k=13), A227131 (k=25).

Programs

  • Mathematica
    Table[Sum[Boole[Mod[d, 13]>0] d , {d, Divisors[n]}], {n, 100}] (* Indranil Ghosh, Mar 29 2017 *)
    f[p_, e_] := If[p == 13, 1, (p^(e+1)-1)/(p-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 17 2020 *)
  • PARI
    a(n)=sumdiv(n, d, ((d%13)>0)*d); \\ Andrew Howroyd, Jul 20 2018

Formula

G.f.: Sum_{k>=1} k*x^k/(1 - x^k) - 13*k*x^(13*k)/(1 - x^(13*k)). - Ilya Gutkovskiy, Mar 30 2017
Multiplicative with a(13^e) = 1 and a(p^e) = (p^(e+1)-1)/(p-1) otherwise. - Amiram Eldar, Sep 17 2020
Sum_{k=1..n} a(k) ~ (Pi^2/13) * n^2. - Amiram Eldar, Oct 04 2022

Extensions

Keyword:mult added by Andrew Howroyd, Jul 20 2018

A287926 Sum of the divisors of n that are not divisible by 49.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 31, 18, 39, 20, 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 63, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 124, 8, 93, 72, 98, 54, 120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 127, 84, 144
Offset: 1

Views

Author

Seiichi Manyama, Jun 15 2017

Keywords

Crossrefs

Sum of the divisors of n that are not divisible by k: A046913 (k=3), A046897 (k=4), A116073 (k=5), A284326 (k=6), A113957 (k=7), A284341 (k=8), A116607 (k=9), A284344 (k=10), A227131 (k=25), this sequence (k=49).

Programs

  • Mathematica
    f[p_, e_] := If[p == 7, 8, (p^(e+1)-1)/(p-1)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 17 2020 *)
  • PARI
    a(n)=sumdiv(n, d, ((d%49)>0)*d); \\ Andrew Howroyd, Jul 20 2018

Formula

Multiplicative with a(7^e) = 8 and a(p^e) = (p^(e+1)-1)/(p-1) otherwise. - Amiram Eldar, Sep 17 2020
Sum_{k=1..n} a(k) ~ (4*Pi^2/49) * n^2. - Amiram Eldar, Oct 04 2022

Extensions

Keyword:mult added by Andrew Howroyd, Jul 20 2018
Showing 1-5 of 5 results.