cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A284344 Sum of the divisors of n that are not divisible by 10.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 13, 8, 12, 28, 14, 24, 24, 31, 18, 39, 20, 12, 32, 36, 24, 60, 31, 42, 40, 56, 30, 32, 32, 63, 48, 54, 48, 91, 38, 60, 56, 20, 42, 96, 44, 84, 78, 72, 48, 124, 57, 33, 72, 98, 54, 120, 72, 120, 80, 90, 60, 48, 62, 96, 104, 127, 84, 144
Offset: 1

Views

Author

Seiichi Manyama, Mar 25 2017

Keywords

Crossrefs

Cf. A261776.
Cf. Sum of the divisors of n that are not divisible by k: A046913 (k=3), A046897 (k=4), A116073 (k=5), A284326 (k=6), A113957 (k=7), A284341 (k=8), A116607 (k=9), this sequence (k=10).

Programs

  • Mathematica
    Table[Sum[Boole[Mod[d, 10]>0] d , {d, Divisors[n]}], {n, 100}] (* Indranil Ghosh, Mar 25 2017 *)
    Table[Total[Select[Divisors[n],Last[IntegerDigits[#]]!=0&]],{n,70}] (* Harvey P. Dale, Jun 29 2022 *)
  • PARI
    for(n=1, 100, print1(sumdiv(n, d, ((d%10)>0)*d), ", ")) \\ Indranil Ghosh, Mar 25 2017
    
  • Python
    from sympy import divisors
    print([sum([i for i in divisors(n) if i%10]) for n in range(1, 101)]) # Indranil Ghosh, Mar 25 2017

Formula

G.f.: Sum_{k>=1} k*x^k/(1 - x^k) - 10*k*x^(10*k)/(1 - x^(10*k)). - Ilya Gutkovskiy, Mar 25 2017
Sum_{k=1..n} a(k) ~ (3*Pi^2/40) * n^2. - Amiram Eldar, Oct 04 2022