A284466 Number of compositions (ordered partitions) of n into odd divisors of n.
1, 1, 1, 2, 1, 2, 6, 2, 1, 20, 8, 2, 60, 2, 10, 450, 1, 2, 726, 2, 140, 3321, 14, 2, 5896, 572, 16, 26426, 264, 2, 394406, 2, 1, 226020, 20, 51886, 961584, 2, 22, 2044895, 38740, 2, 20959503, 2, 676, 478164163, 26, 2, 56849086, 31201, 652968, 184947044, 980, 2, 1273706934, 6620376, 153366, 1803937344
Offset: 0
Keywords
Examples
a(10) = 8 because 10 has 4 divisors {1, 2, 5, 10} among which 2 are odd {1, 5} therefore we have [5, 5], [5, 1, 1, 1, 1, 1], [1, 5, 1, 1, 1, 1], [1, 1, 5, 1, 1, 1], [1, 1, 1, 5, 1, 1], [1, 1, 1, 1, 5, 1], [1, 1, 1, 1, 1, 5] and [1, 1, 1, 1, 1, 1, 1, 1, 1, 1].
Links
Programs
-
Maple
with(numtheory): a:= proc(n) option remember; local b, l; l, b:= select(x-> is(x:: odd), divisors(n)), proc(m) option remember; `if`(m=0, 1, add(`if`(j>m, 0, b(m-j)), j=l)) end; b(n) end: seq(a(n), n=0..60); # Alois P. Heinz, Mar 30 2017
-
Mathematica
Table[d = Divisors[n]; Coefficient[Series[1/(1 - Sum[Boole[Mod[d[[k]], 2] == 1] x^d[[k]], {k, Length[d]}]), {x, 0, n}], x, n], {n, 0, 57}]
-
Python
from sympy import divisors from sympy.core.cache import cacheit @cacheit def a(n): l=[x for x in divisors(n) if x%2] @cacheit def b(m): return 1 if m==0 else sum(b(m - j) for j in l if j <= m) return b(n) print([a(n) for n in range(61)]) # Indranil Ghosh, Aug 01 2017, after Maple code
Formula
a(n) = [x^n] 1/(1 - Sum_{d|n, d positive odd} x^d).
a(n) = 1 if n is a power of 2.
a(n) = 2 if n is an odd prime.