cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A058699 a(n) = p(p(n)), p = partition numbers A000041.

Original entry on oeis.org

1, 1, 2, 3, 7, 15, 56, 176, 1002, 5604, 53174, 526823, 10619863, 214481126, 9035836076, 476715857290, 51820051838712, 7479565078510584, 2645418340688763701, 1318520401612270233223, 1774758704783877366657989, 4025091510519029370421431033
Offset: 0

Views

Author

N. J. A. Sloane, Dec 31 2000

Keywords

Crossrefs

Programs

  • Maple
    a:= n-> (combinat[numbpart]@@2)(n):
    seq(a(n), n=0..22);  # Alois P. Heinz, Apr 05 2017
  • Mathematica
    Table[Nest[PartitionsP, n, 2], {n, 0, 20}] (* Michael De Vlieger, Apr 25 2016 *)
  • PARI
    a(n) = numbpart(numbpart(n)); \\ Michel Marcus, Apr 25 2016

Formula

a(n) = A000041(A000041(n)). - Omar E. Pol, Apr 25 2016

A284909 a(n) = A000041(A000009(n)).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 5, 7, 11, 22, 42, 77, 176, 385, 1002, 3010, 8349, 26015, 105558, 386155, 1741630, 9289091, 49995925, 304801365, 2291320912, 18440293320, 172389800255, 1987276856363, 25025873760111, 365749566870782, 6965850144195831, 144117936527873832
Offset: 0

Views

Author

Alois P. Heinz, Apr 05 2017

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n=0, 1, add(add(
         `if`(d::odd, d, 0), d=divisors(j))*b(n-j), j=1..n)/n)
        end:
    a:= n-> combinat[numbpart](b(n)):
    seq(a(n), n=0..35);
  • Mathematica
    Table[PartitionsP@ PartitionsQ@ n, {n,0, 50}] (* Indranil Ghosh, Apr 07 2017 *)

A284910 a(n) = A000009(A000041(n)).

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 12, 27, 89, 296, 1426, 7108, 58499, 483330, 6711480, 109420549, 2973772212, 98872765938, 6193924614094, 495007377762304, 79850366709300780, 18640233243121488514, 9131454268089695383606, 7218306932686390208993280, 13823416565311581226765397400
Offset: 0

Views

Author

Alois P. Heinz, Apr 05 2017

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n=0, 1, add(add(
         `if`(d::odd, d, 0), d=divisors(j))*b(n-j), j=1..n)/n)
        end:
    a:= n-> b(combinat[numbpart](n)):
    seq(a(n), n=0..22);
  • Mathematica
    Table[PartitionsQ@ PartitionsP@ n, {n,0, 50}] (* Indranil Ghosh, Apr 07 2017 *)

A386261 a(n) = A001511(A001511(n)), where A001511 is the ruler function.

Original entry on oeis.org

1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Amiram Eldar, Jul 17 2025

Keywords

Comments

The first occurrence of k = 1, 2, ... is at n = 2^(2^(k-1) - 1) = A058891(k).
The asymptotic density of the occurrences of k = 1, 2, ... in this sequence is 2^(2^(k-1))/(2^(2^k)-1) = 2/3, 4/15, 16/255, 256/65535, 65536/4294967295, ...

Crossrefs

Programs

  • Mathematica
    f[n_] := IntegerExponent[n, 2] + 1; a[n_] := f[f[n]]; Array[a, 100]
  • PARI
    a(n) = valuation(valuation(n, 2) + 1, 2) + 1;

Formula

a(n) >= 1, with equality if and only if n is in A003159.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{m>=0} 1/(2^(2^m) - 1) = 1.4039368... (A048649).

A386262 a(n) = A051903(A051903(n)) for n >= 2, a(1) = 0.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 2, 2, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Amiram Eldar, Jul 17 2025

Keywords

Comments

The first occurrence of k = 1, 2, ... is at n = 2^(2^k) = A001146(k).
If n is an exponentially squarefree number (A209061) then a(n) <= 1. The converse is not necessarily true, with n = 2592 = 2^5 * 3^4 being the least counterexample.
The asymptotic density of the occurrences of 0 in this sequence is 1/zeta(2) = 6/Pi^2 (A059956).
The asymptotic density of the occurrences of 1 in this sequence is Sum_{k squarefree > 1} (1/zeta(k+1) - 1/zeta(k)) = 0.348423339572619656701... .

Crossrefs

Programs

  • Mathematica
    f[n_] := Max[FactorInteger[n][[;; , 2]]]; f[1] = 0; a[n_] := f[f[n]]; a[1] = 0; Array[a, 100]
  • PARI
    f(n) = if(n == 1, 0, vecmax(factor(n)[,2]));
    a(n) = if(n == 1, 0, f(f(n)));

Formula

a(n) = 0 if and only if n is squarefree (A005117).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=2} A051903(k) * (1/zeta(k+1)-1/zeta(k)) = 0.43779421197744649258... .

A291693 Expansion of Product_{k>=1} (1 + x^q(k)), where q(k) = [x^k] Product_{k>=1} (1 + x^k).

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 11, 13, 16, 19, 22, 26, 30, 34, 38, 44, 49, 54, 62, 67, 74, 83, 89, 98, 107, 115, 124, 134, 145, 155, 168, 178, 189, 206, 217, 231, 247, 259, 277, 294, 310, 327, 345, 365, 382, 404, 424, 444, 470, 489, 513, 539, 561, 588, 613, 641, 670, 699, 729, 756, 791, 824
Offset: 0

Views

Author

Ilya Gutkovskiy, Aug 30 2017

Keywords

Comments

Number of partitions of n into distinct terms of A000009, where 2 different parts of 1 and 2 different parts of 2 are available (1a, 1b, 2a, 2b, 3a, 4a, 5a, 6a, ...).

Examples

			a(3) = 5 because we have [3a], [2a, 1a], [2a, 1b], [2b, 1a] and [2b, 1b].
		

Crossrefs

Programs

  • Maple
    N:= 20: # to get a(0) .. a(A000009(N))
    P:= mul(1+x^k,k=1..N):
    R:= mul(1+x^coeff(P,x,n)),n=1..N):
    seq(coeff(R,x,n),n=0..coeff(P,x,N)); # Robert Israel, Sep 01 2017
  • Mathematica
    nmax = 61; CoefficientList[Series[Product[1 + x^PartitionsQ[k], {k, 1, nmax}], {x, 0, nmax}], x]

Formula

G.f.: Product_{k>=1} (1 + x^A000009(k)).
Showing 1-6 of 6 results.