cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A284908 a(n) = A000009(A000009(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 3, 4, 6, 10, 15, 27, 46, 89, 192, 390, 864, 2304, 5718, 16444, 53250, 173682, 618784, 2556284, 11086968, 53466624, 299016608, 1780751883, 11784471548, 94036004868, 795888123110, 7723778471936, 91117574462854, 1168225267521350
Offset: 0

Views

Author

Alois P. Heinz, Apr 05 2017

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n=0, 1, add(add(
          `if`(d::odd, d, 0), d=divisors(j))*b(n-j), j=1..n)/n)
        end:
    a:= n-> b(b(n)):
    seq(a(n), n=0..35);
  • Mathematica
    Table[PartitionsQ@ PartitionsQ@ n, {n, 0, 50}] (* Indranil Ghosh, Apr 07 2017 *)

A284909 a(n) = A000041(A000009(n)).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 5, 7, 11, 22, 42, 77, 176, 385, 1002, 3010, 8349, 26015, 105558, 386155, 1741630, 9289091, 49995925, 304801365, 2291320912, 18440293320, 172389800255, 1987276856363, 25025873760111, 365749566870782, 6965850144195831, 144117936527873832
Offset: 0

Views

Author

Alois P. Heinz, Apr 05 2017

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n=0, 1, add(add(
         `if`(d::odd, d, 0), d=divisors(j))*b(n-j), j=1..n)/n)
        end:
    a:= n-> combinat[numbpart](b(n)):
    seq(a(n), n=0..35);
  • Mathematica
    Table[PartitionsP@ PartitionsQ@ n, {n,0, 50}] (* Indranil Ghosh, Apr 07 2017 *)

A284910 a(n) = A000009(A000041(n)).

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 12, 27, 89, 296, 1426, 7108, 58499, 483330, 6711480, 109420549, 2973772212, 98872765938, 6193924614094, 495007377762304, 79850366709300780, 18640233243121488514, 9131454268089695383606, 7218306932686390208993280, 13823416565311581226765397400
Offset: 0

Views

Author

Alois P. Heinz, Apr 05 2017

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n=0, 1, add(add(
         `if`(d::odd, d, 0), d=divisors(j))*b(n-j), j=1..n)/n)
        end:
    a:= n-> b(combinat[numbpart](n)):
    seq(a(n), n=0..22);
  • Mathematica
    Table[PartitionsQ@ PartitionsP@ n, {n,0, 50}] (* Indranil Ghosh, Apr 07 2017 *)

A272024 Number of partitions of the sum of the divisors of n.

Original entry on oeis.org

1, 3, 5, 15, 11, 77, 22, 176, 101, 385, 77, 3718, 135, 1575, 1575, 6842, 385, 31185, 627, 53174, 8349, 17977, 1575, 966467, 6842, 53174, 37338, 526823, 5604, 5392783, 8349, 1505499, 147273, 386155, 147273, 64112359, 26015, 966467, 526823, 56634173, 53174, 118114304, 75175, 26543660, 12132164, 5392783
Offset: 1

Views

Author

Omar E. Pol, Apr 19 2016

Keywords

Comments

Also number of partitions of the total number of parts in the partitions of n into equal parts.
Note that one of the partitions of the sum of the divisors of n is also the list of divisors of n in decreasing order, see example.

Examples

			For n = 9 the sum of the divisors of 9 is 1 + 3 + 9 = 13 and the number of partitions of 13 is A000041(13) = 101, so a(9) = 101.
Note that one of the 101 partitions of 13 is [9, 3, 1] and it is also the list of divisors of 9 in decreasing order.
		

Crossrefs

Programs

  • Mathematica
    Table[PartitionsP@ DivisorSigma[1, n], {n, 46}] (* Michael De Vlieger, Apr 19 2016 *)
  • PARI
    a(n) = numbpart(sigma(n)); \\ Michel Marcus, Apr 19 2016

Formula

a(n) = p(sigma(n)) = A000041(A000203(n)).

A272209 Number of partitions of the number of divisors of n.

Original entry on oeis.org

1, 2, 2, 3, 2, 5, 2, 5, 3, 5, 2, 11, 2, 5, 5, 7, 2, 11, 2, 11, 5, 5, 2, 22, 3, 5, 5, 11, 2, 22, 2, 11, 5, 5, 5, 30, 2, 5, 5, 22, 2, 22, 2, 11, 11, 5, 2, 42, 3, 11, 5, 11, 2, 22, 5, 22, 5, 5, 2, 77, 2, 5, 11, 15, 5, 22, 2, 11, 5, 22, 2, 77, 2, 5, 11, 11, 5, 22, 2, 42, 7, 5, 2, 77
Offset: 1

Views

Author

Omar E. Pol, Apr 25 2016

Keywords

Examples

			For n = 12 the divisors of 12 are 1, 2, 3, 4, 6, 12. There are 6 divisors of 12 and the number of partitions of 6 is A000041(6) = 11, so a(12) = 11.
		

Crossrefs

Programs

  • Mathematica
    Table[PartitionsP@ DivisorSigma[0, n], {n, 120}] (* Michael De Vlieger, Apr 25 2016 *)
  • PARI
    a(n) = numbpart(numdiv(n)); \\ Michel Marcus, Apr 26 2016

Formula

a(n) = p(d(n)) = A000041(A000005(n)).

A386261 a(n) = A001511(A001511(n)), where A001511 is the ruler function.

Original entry on oeis.org

1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1
Offset: 1

Views

Author

Amiram Eldar, Jul 17 2025

Keywords

Comments

The first occurrence of k = 1, 2, ... is at n = 2^(2^(k-1) - 1) = A058891(k).
The asymptotic density of the occurrences of k = 1, 2, ... in this sequence is 2^(2^(k-1))/(2^(2^k)-1) = 2/3, 4/15, 16/255, 256/65535, 65536/4294967295, ...

Crossrefs

Programs

  • Mathematica
    f[n_] := IntegerExponent[n, 2] + 1; a[n_] := f[f[n]]; Array[a, 100]
  • PARI
    a(n) = valuation(valuation(n, 2) + 1, 2) + 1;

Formula

a(n) >= 1, with equality if and only if n is in A003159.
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{m>=0} 1/(2^(2^m) - 1) = 1.4039368... (A048649).

A386262 a(n) = A051903(A051903(n)) for n >= 2, a(1) = 0.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 2, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 2, 2, 0, 0, 1, 0, 0, 0
Offset: 1

Views

Author

Amiram Eldar, Jul 17 2025

Keywords

Comments

The first occurrence of k = 1, 2, ... is at n = 2^(2^k) = A001146(k).
If n is an exponentially squarefree number (A209061) then a(n) <= 1. The converse is not necessarily true, with n = 2592 = 2^5 * 3^4 being the least counterexample.
The asymptotic density of the occurrences of 0 in this sequence is 1/zeta(2) = 6/Pi^2 (A059956).
The asymptotic density of the occurrences of 1 in this sequence is Sum_{k squarefree > 1} (1/zeta(k+1) - 1/zeta(k)) = 0.348423339572619656701... .

Crossrefs

Programs

  • Mathematica
    f[n_] := Max[FactorInteger[n][[;; , 2]]]; f[1] = 0; a[n_] := f[f[n]]; a[1] = 0; Array[a, 100]
  • PARI
    f(n) = if(n == 1, 0, vecmax(factor(n)[,2]));
    a(n) = if(n == 1, 0, f(f(n)));

Formula

a(n) = 0 if and only if n is squarefree (A005117).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = Sum_{k>=2} A051903(k) * (1/zeta(k+1)-1/zeta(k)) = 0.43779421197744649258... .

A098716 Number of partitions of the n-th partition number into integers not greater than the (n-1)-th partition number.

Original entry on oeis.org

1, 1, 2, 5, 13, 49, 169, 972, 5559, 52979, 526450, 10617149, 214475363, 9035782113, 476715641982, 51820049305123, 7479565064189887, 2645418340373829359, 1318520401609595443835, 1774758704783778068230273
Offset: 1

Views

Author

Reinhard Zumkeller, Sep 29 2004

Keywords

Examples

			n=7: A000041(7)=15 has A000041(15)=176 partitions, seven of them with integers greater than A000041(7-1)=11: 12+3, 12+2+1, 12+1+1, 13+2, 13+1+1, 14+1 and 15, therefore a(7)=176-7=169.
		

Crossrefs

Cf. A058699.

Programs

  • Maple
    with(combinat): a:=proc(n) local G, Gser: G:=1/product(1-x^j,j=1..numbpart(n-1)): Gser:=series(G,x=0,20+numbpart(n)): coeff(Gser,x^numbpart(n)) end: seq(a(n),n=1..22); # Emeric Deutsch, Apr 23 2006
  • Mathematica
    a[n_] := SeriesCoefficient[1/Product[1 - x^j, {j, 1, PartitionsP[n - 1]}], {x, 0, PartitionsP[n]}];
    Table[a[n], {n, 1, 20}] (* Jean-François Alcover, May 28 2024, after Emeric Deutsch *)

Extensions

More terms from Emeric Deutsch, Apr 23 2006

A180723 p(p(p(n))), p = partition numbers A000041.

Original entry on oeis.org

1, 1, 2, 3, 15, 176, 526823, 476715857290, 26041797385576000582369625213281, 6351070249807989850498698507055571178433293739297826225785529996796553557739865
Offset: 0

Views

Author

Jonathan Vos Post, Jan 21 2011

Keywords

Crossrefs

Cf. A000041 (p(n)), A058699 (p(p(n))).

Formula

a(n) = p(p(p(n))), where p = partition numbers A000041.
Showing 1-9 of 9 results.