cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A342384 Irregular triangle T read by rows: T(n, k) is the number of n-th order magic triangles with magic constant equal to A285009(n) + k, with 0 < k <= 3*n - 5.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 0, 4, 6, 4, 0, 2, 18, 38, 71, 108, 115, 115, 108, 71, 38, 18, 155, 351, 695, 1067, 1475, 1815, 2007, 1815, 1475, 1067, 695, 351, 155, 1891, 4768, 9872, 15370, 22527, 30096, 35731, 37957, 37957, 35731, 30096, 22527, 15370, 9872, 4768, 1891
Offset: 2

Views

Author

Stefano Spezia, Mar 10 2021

Keywords

Examples

			The triangle begins:
    0;
    1,   1,   1,    1;
    2,   0,   4,    6,    4,    0,    2;
   18,  38,  71,  108,  115,  115,  108,   71,   38,   18;
  155, 351, 695, 1067, 1475, 1815, 2007, 1815, 1475, 1067, 695, 351, 155;
  ...
		

Crossrefs

Cf. A016777 (row length), A179805, A285009, A341740, A342467 (row sums).

Programs

Extensions

Terms a(14) and beyond from Andrew Howroyd, Feb 05 2022

A342467 a(n) is the number of n-th order magic triangles.

Original entry on oeis.org

0, 4, 18, 700, 13123, 316424, 7317145, 176476738, 4279366371
Offset: 2

Views

Author

Stefano Spezia, Mar 13 2021

Keywords

Comments

The Trotter reference gives the value 1356 = 76 * 18 for a(5), which is incorrect since 76 is the number of corner groupings and 18 is the maximum number of solutions in any grouping. - Andrew Howroyd, Feb 05 2022

Crossrefs

Programs

  • PARI
    \\ See Links.

Formula

a(n) < A351223(n). - Stefano Spezia, Feb 05 2022

Extensions

a(5) corrected by Andrew Howroyd and Stefano Spezia, Feb 05 2022
a(6)-a(10) from Andrew Howroyd, Feb 05 2022

A342757 Array read by ascending antidiagonals: T(k, n) is the minimum value of the magic constant in a perimeter-magic k-gon of order n.

Original entry on oeis.org

9, 12, 17, 14, 22, 28, 17, 27, 37, 42, 19, 32, 45, 55, 59, 22, 37, 54, 68, 78, 79, 24, 42, 62, 81, 96, 104, 102, 27, 47, 71, 94, 115, 129, 135, 128, 29, 52, 79, 107, 133, 154, 167, 169, 157, 32, 57, 88, 120, 152, 179, 200, 210, 208, 189, 34, 62, 96, 133, 170, 204, 232, 251, 258, 250, 224
Offset: 3

Views

Author

Stefano Spezia, Mar 21 2021

Keywords

Examples

			The array begins:
k\n|  3   4   5   6    7 ...
---+------------------------
3  |  9  17  28  42   59 ...
4  | 12  22  37  55   78 ...
5  | 14  27  45  68   96 ...
6  | 17  32  54  81  115 ...
7  | 19  37  62  94  133 ...
...
		

Crossrefs

Cf. A016873 (n = 4), A285009 (k = 3), A342719, A342758 (maximum).

Programs

  • Mathematica
    T[k_,n_]:= ((1-Mod[k,2])Mod[n,2]+k*(n^2-2*n+2)+n)/2; Table[T[k+3-n,n],{k,3,13},{n,3,k}]//Flatten

Formula

G.f.: (x^2*(-3*y^3 + 2*y - 1) - x*(2*y^3 + y^2 - 2*y + 1) + (y - 1)*y)/((x - 1)^2*(x + 1)*(y - 1)^3*(y + 1)).
T(k, n) = (n^2/2 - n + 1)*k + n/2 if n is even or both n and k are odd.
T(k, n) = (n^2/2 - n + 1)*k + (n + 1)/2 if n is odd and k is even.
T(k, n) = ((1 - (k mod 2))*(n mod 2) + k*(n^2 - 2*n + 2) + n)/2.

A341740 a(n) is the maximum value of the magic constant in a normal magic triangle of order n.

Original entry on oeis.org

12, 23, 37, 54, 74, 97, 123, 152, 184, 219, 257, 298, 342, 389, 439, 492, 548, 607, 669, 734, 802, 873, 947, 1024, 1104, 1187, 1273, 1362, 1454, 1549, 1647, 1748, 1852, 1959, 2069, 2182, 2298, 2417, 2539, 2664, 2792, 2923, 3057, 3194, 3334, 3477, 3623, 3772, 3924
Offset: 3

Views

Author

Stefano Spezia, Feb 18 2021

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,-3,1},{12,23,37},49]

Formula

O.g.f.: x^3*(12 - 13*x + 4*x^2)/(1 - x)^3.
E.g.f.: 3 + x - 2*x^2 - exp(x)*(6 - 4*x - 3*x^2)/2.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 5.
a(n) = (3*n^2 + n - 6)/2 for n > 2.
a(n) = A285009(n) + A016777(n-2) - 1 for n > 3.
a(n) = A095794(n) - 2 = A140090(n-1) - 1. - Hugo Pfoertner, Feb 18 2021
Showing 1-4 of 4 results.